Solving String Constraints with
Regex-Dependent Functions through

Transducers with Priorities and Variables
TaoLUE CHEN
Birkbeck, University of London, UK

ALEJANDRO FLOREsS-LAaMAS, MATTHEW HAGUE

Royal Holloway, University of London, UK

ZHILE1I HAN DENGHANG Hu, ZHILIN WU
Tsinghua University, China Institute of Software, CAS & UCAS, China

SHUANGLONG KAN, ANTHONY W.LIN PuiLipp RUMMER

University of Kaiserslautern, Germany Uppsala University, Sweden

POPL 2022

Table of Content 2/34

Background
Real-world Regular Expression and PSST
The String Logic and Decision Procedure

Implementation

Background 3/34

e The string type is ubiquitous in practical programs.
e Abundant operations for manipulating strings are provided
o replace, extract, match. ..

o split, join, indexof . ..

Background

e The string type is ubiquitous in practical programs.

e Sadly, strings are vulnerable to attacks!.

Injection Cross-Site Scripting (XSS)

String query = "SELECT * FROM accounts WHERE custID=’" String page += "<input name=’creditcard’ type=’TEXT’ value=’"

+ request.getParameter("id") + "?"; + request.getParameter("CC") + "’>";

Insecure Deserialization

LOGYJ @

1. https://owasp.org/www-project-top-ten/2017/Top_10

Motivation 5/34

Q1: How to analyze and verify string-manipulating programs?

Motivation

Q1: How to analyze and verify string-manipulating programs?

Constraint-based verification

// XSS vulnerable
function instantiate(info) {
var template =
"<hi>User{{userName}}</h1>"
var result = template.replace("{{bio}}", info.bio);
result = template.replace("{{userName}}", info.username);
return result;

=x1 =replaceAll(temp, “{{bio}}”, bio) A x5 =replaceAll(z1, “{{userName}}”, user) Az2 € R

Motivation 7/34

Q2: Are existing string theories/solvers sufficient for verifying practical programs?

Motivation 8/34

Q2: Are existing string theories/solvers sufficient for verifying practical programs?

No.

The regular expressions in real programming languages (regex) have more
features than classical regular expressions.

Motivation 0/34

Q2: Are existing string theories/solvers sufficient for verifying practical programs?

No.

The regular expressions in real programming languages (regex) have more
features than classical regular expressions.

o ly/lazy matching: a* versus

matched by result
v i “script>foo< /script”

bt 1

“<script>foo< /script>" e
script

Motivation 10/34

Q2: Are existing string theories/solvers sufficient for verifying practical programs?

No.

The regular expressions in real programming languages (regex) have more
features than classical regular expressions.

o //lazy matching: a* versus

° s and

var t = replace(s, /(+)/g, $2);

Motivation 11/34

Q2: Are existing string theories/solvers sufficient for verifying practical programs?

No.

The regular expressions in real programming languages (regex) have more
features than classical regular expressions.

o //lazy matching: a* versus
o »s and

var t = replace(s, /(+)/g, $2);
°

s.match(/ "a+(b*)c+$/);

Nonstandard Semantics

Example. (Nested Repetition)

In Javascript, some operators’ behaviour depends on its context. For example, the
following statement:

var result = “aaa”.match(/(a*)*/)[1]
returns “aaa”, while
var result = “aaa".match(/(a*7)*/)[1]

returns “a".2

2. The ECMAScript standard prohibits the match of e in €* to be €. https://262.ecma-
international.org/12.0/#sec-runtime-semantics-repeatmatcher-abstract-operation

Table of Content 13/34

e Background
e Real-world Regular Expression and PSST
e The String Logic and Decision Procedure

e Implementation

Real-world Regular Expression 14/34

Definition 1. (Real-world Regular Expression, regex)

A real-world regular expression is defined as:

e== 0lc|alle+e]|[e-c]|
(e) | Capturing Group
e’]] [e™]] Optional
e*] | [e*’] | Kleene Star
et]|[et]] Kleene Plus
elmumal)| [elmim2}?) Repetition

where a is a letter in alphabet >, m1, mo € IN with mq1 < mo.

It's hard to give a denotational semantics to regex.

Operational semantics?

Construction of PSST 15/34

We construct a Prioritized Streaming String Transducers (PSST) T for each regex
e inductively as its operational semantics.

PSST 16/34

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T = (Q, qo, %, X, 0,7, E, F'), where

() is a finite set of states, qy € () is the initial state
Y. Is the input and output alphabet
X is a finite set of string variables

6 € Q x ¥ — Q defines the non-c transitions as well as their priorities (from
highest to lowest)

T€Q— Q x Q such that forevery € Q, if 7(q) = (Py; P»), then PyN Py=1),

E associates with each transition a string-variable assignment function, i.e., E
is partial function from Q x 3¢ x @ to X — (X UX)* such that its domain
is the set of tuples (q,a, q’) satisfying that either a €3 and ¢’ € (q,a) or
a=c¢ and ¢’ € 1(q)

F' is the output function, which is a partial function from @) to (X UX)*

PSST 17/34

PSST extends finite state transducer with:
e Priorities: nondeterministic transitions are ordered

e Memory: a fixed number of string variables containing unbounded string.

tef{o,---,9} ¢efo,---,9}
x1 = 21l To 1= xol

\ 5 ¢ e {o,- } € Q . F(qa) = z1
@ T :=¢€ >© —xlé _ —:;2_:_5_ > - _>

Figure 1. PSST 7 to extract the matching of the first capturing group in (\d+)(\d*)

The accepted run of 7 on the input string 2022 is:

Tri:=¢€ r1:=x12 xr1:=x10 r1:=x12 r1:=x12 To:=¢

qo > 41 7 42 7 42 7 42 q2 > 43 — {4,
IS5 2 0 2 2 € €

~

..with output 2022.

Construction of PSST 18/34

We construct a PSST 7, for each regex e inductively as its operational semantics.

T, Tiat)
@ x[ai] =€ @
€ixa = Eliﬂa =&
o
a|x, i =xzea a|”e e
i im[aﬂ = L[at]@
€
Jos Zq = null

Figure 2. PSST for the regex a,a* and a™

Validation 10/34

We conduct experiments to validate the formal semantics against the actual JavaS-
cript regex-string matching semantics.

For each regex e we construct 7. and generate an input string w and the corres-
ponding output string w’. We execute the following code in Node.js:

x = w; console.log(x.match(reg) [1]);

And compare the output against w’.

1110 nontrivial regexes, including all operators, are tested. We confirm consistency
of semantics on all of them.

Table of Content 20/34

e Background
e Real-world Regular Expression and PSST
e The String Logic and Decision Procedure

e Implementation

Our String Logic

Definition 2. (STR) The well-formed formula of the theory STR is defined as:

def
Y L=Y
2= concatenation
TeEe regular constraint
y = extract; o(x) extraction

y = replaceAll ¢ ;ep(x) replacement

e N pleV el p

where x, vy, z are string variables, 1 € N is the index of capturing groups, €,
pat € regex is the match pattern, and rep € R is the replacement string. R is
defined as the concatenation of letters in > and references $i, for i € IN.

Theorem 1. For each constraint y = extract; pat() and y =replaceAll ¢ 1op().
an equivalent PSST ‘T can be constructed. (Lemma 4.7)

Decidability 22/34

Theorem 2. STR is undecidable.

Proof. Followed directly from3]

3. Anthony W. Lin and Pablo Barcelé. 2016. String Solving with Word Equations and Trans-
ducers: Towards a Logic for Analysing Mutation XSS (POPL '16). ACM, 123-136

Sequent Calculus for STR

we handle STR constraints with a sound sequent calculus.

Fg ¥, w \ Fﬂ P, _'(U Fa ¥ Fz w A Fz @ FE _Vz*" —_— F’ ¥

I'x € ¢e° ' #y,y=f(r1,...,2n . I''ree 'z € e
¢ rTEe % 7Yy =z) where y is fresh Cur Tee L=

I'Nrde Oz # f(z1,...,20) I

INree,xz=y,yce Iree,ye€ e

— -SUBSUME if L(ey)N L(ex) =10
Prop Faxeeazzy # F:$e€1:$¢y1y682 1 (Pl) ((:2)
receyce . zeeyece .
—_PRrOP- f|L(e)] =1 -Propr-ELIM fll(e) =1
ProP-ELIM Focer—y if |L(e)] # Trxcealy if |L(e)]
CLOSE Irzee,...,t€e, if L(ex)N---NL(en) =10

I''e€e1,...,x €Een .
SUME ’ :].fEP m"'nEE-n CE'B
SUBSUME T zcezCer.. . .z€ce (e1) (en) C L(e)

Sequent Calculus for STR

we handle STR constraints with a sound sequent calculus.

[z €e .. n>1and

n ».‘4: f
INTERSECT T.zc€er... z€Cen 1 Ller) N---N Len) = L(e)
I'rcex= f(ra,..., Tn),T1 €€1,...,Tn € €n :
AT i i i ' ' ' if L(e) = f(L(e1r),...,L(en
FwbD-Prop T.2 = [(21,....%n). 21 € €1, .7 € en (e) = f(L(er), ,L(en))
Dz ee,xs €e1,...,n € €y .. Lle)= f(L(er),-.., L(en))
FwbD-ProprP-ELIM : f '
O N e = (@1, .. an) a1 € er,ooyan €en - and [L(e) =1

{F,J:Ge,:r:f(scl,...,:rn),:rl €el, ..., xn Ee;}f'zl ” k “1(L(e)) =
Dz eex=f(xy,...,2n) _, (£(e1) x L(en))

BwbD-PRropr

e It is shown in previous work* that the preimage of concatenaction, - ~*(L(e)),
is computable.

e Is the preimage of a PSST computable?

4. T. Chen, Y. Chen, M. Hague, A. W. Lin, and Z. Wu, ‘What is decidable about string
constraints with the ReplaceAll function’, PACMPL, vol. 2, no. POPL, p. 3:1-3:29, 2018

Regularity-Preserving Property 25/34

Theorem 3.

Given a PSST T and an FA A, we can compute an FA B in exponential time such
that B=T '(A). (Lemma 5.5)

Proof. By simulation. Available in full version of the paper>. []

5. https://arxiv.org/pdf/2111.04298.pdf

Decidability 26/34

Theorem 4. STR is undecidable.

Proof. Followed directly from®]

But...

Theorem 5. The straight-line fragment of STR is decidable.

6. Anthony W. Lin and Pablo Barcelé. 2016. String Solving with Word Equations and Trans-
ducers: Towards a Logic for Analysing Mutation XSS (POPL '16). ACM, 123-136

Straight-line Fragment

Definition 3. A STR formula ¢ is said to be straight-line, if

1. it contains neither negation nor disjunction

2. @ can be ordered into a sequence of equations x1=1t1,xo="1to,..., T, =1y,
plus regular constraints, such that x1, ..., x, are mutually distinct, and for
eachi€{l,...,n}, x; does not occurinty,... ,t;_1.

Let STRg1, denote the set of straight-line STR formulas.

z

> y
z=replaceAll o yp)- g1(x) Nz =y -2 ANy €ab” X ”—J

z=replaceAll o yp)- g1(y) ANz =y -2 ANy €ab” V4 x_j

Decision Procedure for STRgj, 28/34

Every STRgr, formula ¢ can be simplified into conjunctions of formulas of the
form z=xz-y,y=7T (z) and = € A, where T is a PSST and A is an FA.

Example. The following constraint:

rcA, AN
y=T(z) N yeA,
z=x-y N z€A,

is straight-line. We decide its satisfiability by iteratively computing pre-images
of regular constraints under - (concatenation) and 7.

Step 1. For z=x-y and z € A, by previous results, we can compute - 1(A,) =

{(z,y)|z-ye A} =, Al » x Ai , for some A , and A; ,.

Decision Procedure for STRgj, 20/34

Example. The following constraint:

reA, N
y=T(x) N yeA,
z=x-y N z€A,

is straight-line. We decide its satisfiability by iteratively computing pre-images
of regular constraints under - (concatenation) and 7.

reANA L N
y=T(z) N yecA,NA;,

pRAy N 2R A

Decision Procedure for STRgj, 30/34

Example. The remaining constraint:

xcA,NAL A
y=T(z) N yeA,NA4,

Step 2. For y="T(x) and y € A, N A}, we compute A} =Pre(7T,A,NA;)=
T HAynAy) ={z|T(z) € AyN Ay}

Decision Procedure for STRgj, 31/34

Example. The remaining constraint:

xc A, NA . NAYJ

YR A 9e ASTA,

Step 3. We check the emptiness of A, N AL N AL. If the language is empty, the
constraint is unsatisfiable. Otherwise, it's satisfiable.

Our String Solver 32/34

OSTRICH: Optimistic STRIng Constraint Handler’

Version 1.1 now supports solving constraints with real-world regular expressions.

e The first and yet the only solver with such support

e The implementation supports more features like anchors.

7. https://github.com/uuverifiers/ostrich

Evaluation 33/34

RQ: How does OSTRICH compare to other solvers that can handle real-world
regular expression?

We evaluate OSTRICH on over 195 000 string constraints.

It greatly increase precision and efficiency (18x) compared to previous approxim-
ation-based methods.

Average Time OSTRICH ExpoSE+Z3
match (98,117 constraints) 1.57s 28.0s
replace (98,117 constraints) 6.62s 55.0s

Takeaway 34/34

In our work, we propose:

1. The first string theory and solver supporting regex and regex-dependent string-
manipulating functions.

2. A new automata model called Prioritized Streaming String Transducer (PSST)
to precisely capture the semantics of real-world regular expressions.

3. The proof of regularity-preserving property of PSST.

4. A sound sequent calculus for solving the string theory, which is complete for
straight-line fragment.

