Solving String Constraints with Regex-Dependent Functions through Transducers with Priorities and Variables

TAOLUE CHEN Birkbeck, University of London, UK

ALEJANDRO FLORES-LAMAS, MATTHEW HAGUE Royal Holloway, University of London, UK

ZHILEI HANDENGHANG HU, ZHILIN WUTsinghua University, ChinaInstitute of Software, CAS & UCAS, China

SHUANGLONG KAN, ANTHONY W.LINPHILIPP RÜMMERUniversity of Kaiserslautern, GermanyUppsala University, Sweden

POPL 2022

Table of Content

Background

- Real-world Regular Expression and PSST
- The String Logic and Decision Procedure
- Implementation

Background

- The **string** type is ubiquitous in practical programs.
- Abundant operations for manipulating strings are provided
 - replace, extract, match...
 - \circ split, join, index of . . .

Background

- The **string** type is ubiquitous in practical programs.
- Sadly, strings are vulnerable to attacks¹.

Injection Cross-Site Scripting (XSS)

String query = "SELECT * FROM accounts WHERE custID='"

+ request.getParameter("id") + "'";

Insecure Deserialization

^{1.} https://owasp.org/www-project-top-ten/2017/Top_10

Q1: How to analyze and verify string-manipulating programs?

Q1: How to analyze and verify string-manipulating programs?

Constraint-based verification

```
// XSS vulnerable
function instantiate(info) {
    var template =
    "<h1>User<span onMouseOver="popupText('{{bio}}')">{{userName}}</span></h1>"
    var result = template.replace("{{bio}}", info.bio);
    result = template.replace("{{userName}}", info.username);
    return result;
}
```

 $\Rightarrow x_1 = \operatorname{replaceAll(temp, ``{\{bio\}}'', bio) \land x_2 = \operatorname{replaceAll}(x_1, ``{\{userName\}}'', user) \land x_2 \in R$

Q2: Are existing string theories/solvers sufficient for verifying practical programs?

Q2: Are existing string theories/solvers sufficient for verifying practical programs? No.

The regular expressions in real programming languages (*regex*) have more features than *classical* regular expressions.

Q2: Are existing string theories/solvers sufficient for verifying practical programs? No.

The regular expressions in real programming languages (*regex*) have more features than *classical* regular expressions.

• greedy/lazy matching: a* versus a*?

"<script>foo</script>"

matched by "<(.*)>" "<(.*?)>" result "script>foo</script" "script"

Q2: Are existing string theories/solvers sufficient for verifying practical programs? No.

The regular expressions in real programming languages (*regex*) have more features than *classical* regular expressions.

- greedy/lazy matching: a* versus a*?
- capturing groups and references:

var t = replace(s, /((ab*?)+)/g, \$2);

Q2: Are existing string theories/solvers sufficient for verifying practical programs? No.

The regular expressions in real programming languages (*regex*) have more features than *classical* regular expressions.

- greedy/lazy matching: a* versus a*?
- capturing groups and references:

var t = replace(s, /((ab*?)+)/g, \$2);

• anchors:

s.match(/^a+(b*)c+\$/);

12/34

Example. (Nested Repetition)

In Javascript, some operators' behaviour depends on its context. For example, the following statement:

var result = "aaa".match(/(a*)*/)[1]

returns "aaa", while

var result = "aaa".match(/(a*?)*/)[1]

returns "a".²

^{2.} The ECMAScript standard prohibits the match of e in e^* to be ε . https://262.ecmainternational.org/12.0/#sec-runtime-semantics-repeatmatcher-abstract-operation

Table of Content

- Background
- Real-world Regular Expression and PSST
- The String Logic and Decision Procedure
- Implementation

Definition 1. (Real-world Regular Expression, regex)

A real-world regular expression is defined as:

$$\begin{array}{ll}e\stackrel{\mathrm{def}}{=\!\!=\!\!=\!}& \emptyset \left| \left| \varepsilon \right| a \right| \left[e + e \right] \left| \left[e \cdot e \right] \right| \\ & (e) \left| & & \text{Capturing Group} \\ & \left[e^{?} \right] \left| \left[e^{??} \right] \right| & & \text{Optional} \\ & \left[e^{*} \right] \left| \left[e^{*?} \right] \right| & & \text{Kleene Star} \\ & \left[e^{+} \right] \left| \left[e^{+?} \right] \right| & & \text{Kleene Plus} \\ & \left[e^{\{m_1, m_2\}} \right] \left| \left[e^{\{m_1, m_2\}?} \right] & & \text{Repetition} \end{array}$$

where a is a letter in alphabet Σ , $m_1, m_2 \in \mathbb{N}$ with $m_1 \leq m_2$.

It's hard to give a denotational semantics to regex. Operational semantics?

Construction of PSST

15/34

We construct a *Prioritized Streaming String Transducers* (*PSST*) \mathcal{T}_e for each regex e inductively as its operational semantics.

PSST

Definition. (Prioritized Streaming String Transducers) A prioritized streaming string transducer *is an octuple* $\mathcal{T} = (Q, q_0, \Sigma, X, \delta, \tau, E, F)$, *where*

- Q is a finite set of states, $q_0 \in Q$ is the initial state
- Σ is the input and output alphabet
- X is a finite set of string variables
- $\delta \in Q \times \Sigma \rightarrow \overline{Q}$ defines the non- ε transitions as well as their priorities (from highest to lowest)
- $\tau \in Q \rightarrow \bar{Q} \times \bar{Q}$ such that for every $q \in Q$, if $\tau(q) = (P_1; P_2)$, then $P_1 \cap P_2 = \emptyset$,
- *E* associates with each transition a string-variable assignment function, i.e., *E* is partial function from $Q \times \Sigma^{\varepsilon} \times Q$ to $X \to (X \cup \Sigma)^*$ such that its domain is the set of tuples (q, a, q') satisfying that either $a \in \Sigma$ and $q' \in \delta(q, a)$ or $a = \varepsilon$ and $q' \in \tau(q)$
- F is the output function, which is a partial function from Q to $(X\cup\Sigma)^*$

PSST

PSST extends finite state transducer with:

- Priorities: nondeterministic transitions are ordered
- Memory: a fixed number of *string variables* containing unbounded string.

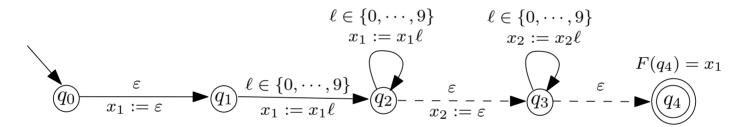


Figure 1. PSST \mathcal{T} to extract the matching of the first capturing group in $(\backslash d+)(\backslash d^*)$

The accepted run of ${\mathcal T}$ on the input string 2022 is:

$$q_0 \xrightarrow[\varepsilon]{x_1 := \varepsilon}{\varepsilon} q_1 \xrightarrow[2]{x_1 := x_1 2}{2} q_2 \xrightarrow[0]{x_1 := x_1 0}{0} q_2 \xrightarrow[2]{x_1 := x_1 2}{2} q_2 \xrightarrow[2]{x_1 := x_1 2}{2} q_2 \xrightarrow[\varepsilon]{x_2 := \varepsilon}{\varepsilon} q_3 \xrightarrow[\varepsilon]{\varepsilon} q_4,$$

... with output 2022.

Construction of PSST

We construct a PSST \mathcal{T}_e for each regex e inductively as its operational semantics.

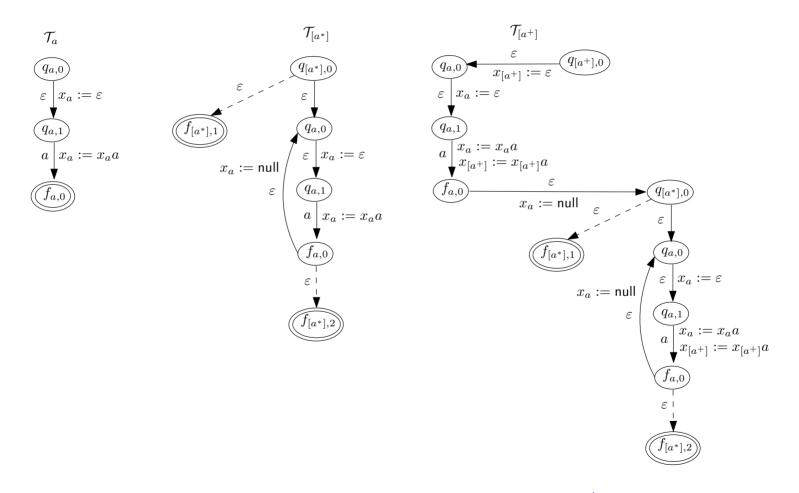


Figure 2. PSST for the regex a, a^* and a^+

Validation

We conduct experiments to validate the formal semantics against the actual JavaScript regex-string matching semantics.

For each regex e we construct \mathcal{T}_e and generate an input string w and the corresponding output string w'. We execute the following code in Node.js:

```
var x = w; console.log(x.match(reg)[1]);
```

And compare the output against w'.

1110 nontrivial regexes, including all operators, are tested. We confirm consistency of semantics on all of them.

Table of Content

- Background
- Real-world Regular Expression and PSST
- The String Logic and Decision Procedure
- Implementation

Our String Logic

Definition 2. (STR) The well-formed formula of the theory STR is defined as:

$$\begin{array}{lll} \varphi \stackrel{\mathrm{def}}{=\!\!=\!\!=} & x = y & \text{concatenation} \\ & | \, z = x \cdot y & \text{concatenation} \\ & | \, x \in e & \text{regular constraint} \\ & | \, y = \mathsf{extract}_{i,e}(x) & \text{extraction} \\ & | \, y = \mathsf{replaceAll}_{\mathsf{pat,rep}}(x) & \text{replacement} \\ & | \, \varphi \wedge \varphi | \, \varphi \lor \varphi | \, \neg \varphi \end{array}$$

where x, y, z are string variables, $i \in \mathbb{N}$ is the index of capturing groups, e, pat \in regex is the match pattern, and rep $\in \Re$ is the replacement string. \Re is defined as the concatenation of letters in Σ and references \$i, for $i \in \mathbb{N}$.

Theorem 1. For each constraint $y = \text{extract}_{i,\text{pat}}(x)$ and $y = \text{replaceAll}_{\text{pat,rep}}(x)$. an equivalent PSST \mathcal{T} can be constructed. (Lemma 4.7)

Decidability

22/34

Theorem 2. STR is undecidable.

Proof. Followed directly from³

^{3.} Anthony W. Lin and Pablo Barceló. 2016. String Solving with Word Equations and Transducers: Towards a Logic for Analysing Mutation XSS (POPL '16). ACM, 123–136

we handle STR constraints with a sound sequent calculus.

$$\wedge \frac{\Gamma, \varphi, \psi}{\Gamma, \varphi \land \psi} \quad \neg \lor \frac{\Gamma, \neg \varphi, \neg \psi}{\Gamma, \neg (\varphi \lor \psi)} \quad \lor \frac{\Gamma, \varphi}{\Gamma, \varphi \lor \psi} \quad \neg \land \frac{\Gamma, \neg \varphi}{\Gamma, \neg (\varphi \land \psi)} \quad \neg \neg \frac{\Gamma, \varphi}{\Gamma, \neg \varphi}$$

$$\neq \frac{\Gamma, x \in e^{c}}{\Gamma, x \notin e} \quad \neq \frac{\Gamma, x \neq y, y = f(x_{1}, \dots, x_{n})}{\Gamma, x \neq f(x_{1}, \dots, x_{n})} \text{ where } y \text{ is fresh } \operatorname{Cur} \frac{\Gamma, x \in e}{\Gamma} \quad \frac{\Gamma, x \in e^{c}}{\Gamma} \quad \Gamma = \frac{\Gamma, x \in e^{c}}{\Gamma}$$

$$=-\operatorname{PROP}\frac{\Gamma, x \in e, x = y, y \in e}{\Gamma, x \in e, x = y} \qquad \neq -\operatorname{SUBSUME}\frac{\Gamma, x \in e_1, y \in e_2}{\Gamma, x \in e_1, x \neq y, y \in e_2} \quad \text{if } \mathcal{L}(e_1) \cap \mathcal{L}(e_2) = \emptyset$$

$$=-\operatorname{Prop-Elim} \frac{\Gamma, x \in e, y \in e}{\Gamma, x \in e, x = y} \text{ if } |\mathcal{L}(e)| = 1 \qquad \neq \operatorname{Prop-Elim} \frac{\Gamma, x \in e, y \in e^{c}}{\Gamma, x \in e, x \neq y} \text{ if } |\mathcal{L}(e)| = 1$$

$$CLOSE \overline{\Gamma, x \in e_1, \dots, x \in e_n} \qquad \text{if } \mathcal{L}(e_1) \cap \dots \cap \mathcal{L}(e_n) = \emptyset$$

$$SUBSUME \frac{\Gamma, x \in e_1, \dots, x \in e_n}{\Gamma, x \in e, x \in e_1, \dots, x \in e_n} \qquad \text{if } \mathcal{L}(e_1) \cap \dots \cap \mathcal{L}(e_n) \subseteq \mathcal{L}(e)$$

24/34

we handle STR constraints with a sound sequent calculus.

$$INTERSECT \frac{\Gamma, x \in e}{\Gamma, x \in e_1, \dots, x \in e_n} \qquad \text{if} \quad \begin{array}{l} n > 1 \text{ and} \\ \mathcal{L}(e_1) \cap \dots \cap \mathcal{L}(e_n) = \mathcal{L}(e) \end{array}$$

$$FWD-PROP \frac{\Gamma, x \in e, x = f(x_1, \dots, x_n), x_1 \in e_1, \dots, x_n \in e_n}{\Gamma, x = f(x_1, \dots, x_n), x_1 \in e_1, \dots, x_n \in e_n} \qquad \text{if} \quad \mathcal{L}(e) = f(\mathcal{L}(e_1), \dots, \mathcal{L}(e_n)) \end{array}$$

$$FWD-PROP-ELIM \frac{\Gamma, x \in e, x_1 \in e_1, \dots, x_n \in e_n}{\Gamma, x = f(x_1, \dots, x_n), x_1 \in e_1, \dots, x_n \in e_n} \qquad \text{if} \quad \begin{array}{l} \mathcal{L}(e) = f(\mathcal{L}(e_1), \dots, \mathcal{L}(e_n)) \\ \text{and} \mid \mathcal{L}(e) \mid = 1 \end{array}$$

$$BWD-PROP \frac{\left\{\Gamma, x \in e, x = f(x_1, \dots, x_n), x_1 \in e_1^i, \dots, x_n \in e_n^i\right\}_{i=1}^k}{\Gamma, x \in e, x = f(x_1, \dots, x_n), x_1 \in e_1^i, \dots, x_n \in e_n^i} \qquad \text{if} \quad \begin{array}{l} f^{-1}(\mathcal{L}(e)) = \\ \bigcup_{i=1}^k \left(\mathcal{L}(e_1^i) \times \dots \times \mathcal{L}(e_n^i)\right) \end{array}$$

- It is shown in previous work⁴ that the preimage of concatenaction, $\cdot^{-1}(L(e))$, is computable.
- Is the preimage of a PSST computable?

^{4.} T. Chen, Y. Chen, M. Hague, A. W. Lin, and Z. Wu, 'What is decidable about string constraints with the ReplaceAll function', *PACMPL*, vol. 2, no. POPL, p. 3:1-3:29, 2018

Regularity-Preserving Property

Theorem 3.

Given a PSST \mathcal{T} and an FA A, we can compute an FA B in exponential time such that $B = \mathcal{T}^{-1}(A)$. (Lemma 5.5)

Proof. By simulation. Available in full version of the paper⁵.

^{5.} https://arxiv.org/pdf/2111.04298.pdf

Decidability

Theorem 4. STR is undecidable.

Proof. Followed directly from⁶

But . . .

Theorem 5. The straight-line fragment of STR is decidable.

^{6.} Anthony W. Lin and Pablo Barceló. 2016. String Solving with Word Equations and Transducers: Towards a Logic for Analysing Mutation XSS (POPL '16). ACM, 123–136

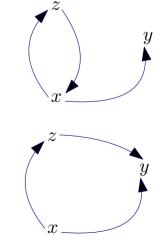
Definition 3. A STR formula φ is said to be **straight-line**, if

- 1. it contains neither negation nor disjunction
- 2. φ can be ordered into a sequence of equations $x_1 = t_1, x_2 = t_2, \ldots, x_n = t_n$ plus regular constraints, such that x_1, \ldots, x_n are mutually distinct, and for each $i \in \{1, \ldots, n\}$, x_i does not occur in t_1, \ldots, t_{i-1} .

Let STR_{SL} denote the set of straight-line STR formulas.

$$z = \operatorname{replaceAll}_{(a+b)^*,\$1}(x) \land x = y \cdot z \land y \in ab^*$$

$$z = \mathsf{replaceAll}_{(a+b)^*,\$1}(y) \land x = y \cdot z \land y \in ab^*$$



Х

Every STR_{SL} formula φ can be simplified into conjunctions of formulas of the form $z = x \cdot y, y = \mathcal{T}(x)$ and $x \in A$, where \mathcal{T} is a PSST and A is an FA.

Example. The following constraint:

 $\begin{array}{rcl} x \in A_x & \wedge \\ y = \mathcal{T}(x) & \wedge & y \in A_y \\ z = x \cdot y & \wedge & z \in A_z \end{array}$

is straight-line. We decide its satisfiability by iteratively computing **pre-images** of regular constraints under \cdot (concatenation) and \mathcal{T} .

Step 1. For $z = x \cdot y$ and $z \in A_z$, by previous results, we can compute $\cdot^{-1}(A_z) = \{(x, y) | x \cdot y \in A_z\} = \bigcup_{i=1}^{n} A'_{i,x} \times A'_{i,y}$ for some $A'_{i,x}$ and $A'_{i,y}$.

Example. The following constraint:

 $\begin{array}{rcl} x \in A_x & \wedge \\ y = \mathcal{T}(x) & \wedge & y \in A_y \\ z = x \cdot y & \wedge & z \in A_z \end{array}$

is straight-line. We decide its satisfiability by iteratively computing **pre-images** of regular constraints under \cdot (concatenation) and \mathcal{T} .

$$\begin{aligned} x \in A_x \cap A'_{i,x} & \wedge \\ y = \mathcal{T}(x) & \wedge y \in A_y \cap A'_{i,y} \\ \notz \not\models \notx / \cdot / y & \wedge \notz \not\in A_z \end{aligned}$$

Decision Procedure for STR_{SL}

Example. The remaining constraint:

$$x \in A_x \cap A'_x \land$$
$$y = \mathcal{T}(x) \land y \in A_y \cap A'_y$$

Step 2. For $y = \mathcal{T}(x)$ and $y \in A_y \cap A'_y$, we compute $A''_x = \operatorname{Pre}(\mathcal{T}, A_y \cap A'_y) = \mathcal{T}^{-1}(A_y \cap A'_y) = \{x | \mathcal{T}(x) \in A_y \cap A'_y\}.$

31/34

Example. The remaining constraint:

 $x \in A_x \cap A'_x \cap A''_x$ $y \not\models \mathcal{M}(x) \land y \not\in \mathcal{A}_y \cap \mathcal{A}'_y$

Step 3. We check the emptiness of $A_x \cap A'_x \cap A''_x$. If the language is empty, the constraint is unsatisfiable. Otherwise, it's satisfiable.

Our String Solver

OSTRICH: Optimistic STRIng Constraint Handler⁷

Version 1.1 now supports solving constraints with real-world regular expressions.

- The first and yet the only solver with such support
- The implementation supports more features like anchors.

^{7.} https://github.com/uuverifiers/ostrich

Evaluation

RQ: How does OSTRICH compare to other solvers that can handle real-world regular expression?

We evaluate OSTRICH on over 195 000 string constraints.

It greatly increase precision and efficiency (18x) compared to previous approximation-based methods.

Average Time	OSTRICH	ExpoSE+Z3
match (98,117 constraints)	1.57s	28.0s
replace (98,117 constraints)	6.62s	55.0s

Takeaway

In our work, we propose:

- 1. The first string theory and solver supporting *regex* and regex-dependent stringmanipulating functions.
- 2. A new automata model called Prioritized Streaming String Transducer (PSST) to precisely capture the semantics of real-world regular expressions.
- 3. The proof of regularity-preserving property of PSST.
- 4. A sound sequent calculus for solving the string theory, which is complete for straight-line fragment.