
Solving String Constraints with

Regex-Dependent Functions through

Transducers with Priorities and Variables

Taolue Chen

Birkbeck, University of London, UK

Alejandro Flores-Lamas, Matthew Hague

Royal Holloway, University of London, UK

Zhilei Han

Tsinghua University, China

Denghang Hu, Zhilin Wu

Institute of Software, CAS & UCAS, China

Shuanglong Kan, Anthony W.Lin

University of Kaiserslautern, Germany

Philipp Rümmer

Uppsala University, Sweden

POPL 2022

Table of Content 2/34

� Background

� Real-world Regular Expression and PSST

� The String Logic and Decision Procedure

� Implementation

Background 3/34

� The string type is ubiquitous in practical programs.

� Abundant operations for manipulating strings are provided

� replace, extract, match . . .

� split, join, indexof . . .

Background 4/34

� The string type is ubiquitous in practical programs.

� Sadly, strings are vulnerable to attacks1.

Injection Cross-Site Scripting (XSS)

Insecure Deserialization

1. https://owasp.org/www-project-top-ten/2017/Top_10

Motivation 5/34

Q1: How to analyze and verify string-manipulating programs?

Motivation 6/34

Q1: How to analyze and verify string-manipulating programs?

Constraint-based verification

)x1= replaceAll(temp; �{{bio}}�; bio)^x2= replaceAll(x1; �ffuserNamegg�; user)^x22R

Motivation 7/34

Q2: Are existing string theories/solvers sufficient for verifying practical programs?

Motivation 8/34

Q2: Are existing string theories/solvers sufficient for verifying practical programs?

No.

The regular expressions in real programming languages (regex) have more
features than classical regular expressions.

Motivation 9/34

Q2: Are existing string theories/solvers sufficient for verifying practical programs?

No.

The regular expressions in real programming languages (regex) have more
features than classical regular expressions.

� greedy/lazy matching: a* versus a*?

matched by result

�<script>foo</script>�
�<(.*)>� �script>foo</script�
�<(.*?)>� �script�

Motivation 10/34

Q2: Are existing string theories/solvers sufficient for verifying practical programs?

No.

The regular expressions in real programming languages (regex) have more
features than classical regular expressions.

� greedy/lazy matching: a* versus a*?

� capturing groups and references:

var t = replace(s, /((ab*?)+)/g, $2);

Motivation 11/34

Q2: Are existing string theories/solvers sufficient for verifying practical programs?

No.

The regular expressions in real programming languages (regex) have more
features than classical regular expressions.

� greedy/lazy matching: a* versus a*?

� capturing groups and references:

var t = replace(s, /((ab*?)+)/g, $2);

� anchors:

s.match(/^a+(b*)c+$/);

Nonstandard Semantics 12/34

Example. (Nested Repetition)

In Javascript, some operators' behaviour depends on its context. For example, the
following statement:

var result = �aaa�.match(/(a*)*/)[1]

returns �aaa�, while

var result = �aaa�.match(/(a*?)*/)[1]

returns �a�.2

2. The ECMAScript standard prohibits the match of e in e� to be ". https://262.ecma-
international.org/12.0/#sec-runtime-semantics-repeatmatcher-abstract-operation

Table of Content 13/34

� Background

� Real-world Regular Expression and PSST

� The String Logic and Decision Procedure

� Implementation

Real-world Regular Expression 14/34

Definition 1. (Real-world Regular Expression, regex)

A real-world regular expression is defined as:

e================================ =
def ;j " j aj [e+ e] j [e � e] j

(e) j Capturing Group

[e?] j [e??] j Optional

[e�] j [e�?] j Kleene Star

[e+] j [e+?] j Kleene Plus

[efm1;m2g]j [efm1;m2g?] Repetition

where a is a letter in alphabet �, m1;m22N with m16m2.

It's hard to give a denotational semantics to regex.

Operational semantics?

Construction of PSST 15/34

We construct a Prioritized Streaming String Transducers (PSST) Te for each regex
e inductively as its operational semantics.

PSST 16/34

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T =(Q; q0;�; X ; �; � ; E; F), where

� Q is a finite set of states, q02Q is the initial state

� � is the input and output alphabet

� X is a finite set of string variables

� � 2Q��!Q� defines the non-" transitions as well as their priorities (from
highest to lowest)

� � 2Q!Q��Q� such that for every q2Q, if �(q)=(P1;P2), then P1\P2=;,

� E associates with each transition a string-variable assignment function, i.e., E
is partial function from Q��"�Q to X! (X [�)� such that its domain
is the set of tuples (q; a; q 0) satisfying that either a2� and q 02 �(q; a) or
a= " and q 02 �(q)

� F is the output function, which is a partial function from Q to (X [�)�

PSST 17/34

PSST extends finite state transducer with:

� Priorities: nondeterministic transitions are ordered

� Memory: a fixed number of string variables containing unbounded string.

q2
εq1

` ∈ {0, · · · , 9}
x1 := x1`

x1 := x1`

q3 q4
ε

` ∈ {0, · · · , 9}

F (q4) = x1

q0
ε

x1 := ε x2 := ε

x2 := x2`
` ∈ {0, · · · , 9}

Figure 1. PSST T to extract the matching of the first capturing group in (nd+)(nd*)

The accepted run of T on the input string 2022 is:

q0!!! !
"

x1:="
q1!!! !

2

x1:=x12
q2!!! !

0

x1:=x10
q2!!! !

2

x1:=x12
q2!!! !

2

x1:=x12
q2!!! !

"

x2:="
q3!!!!!!!!

"
q4;

. . .with output 2022.

Construction of PSST 18/34

We construct a PSST Te for each regex e inductively as its operational semantics.

Ta

qa,0

qa,1

ε

fa,0

a

xa := ε

xa := xaa

T[a∗]

qa,0

qa,1

ε

fa,0

a

xa := ε

xa := xaa

ε

xa := null

f[a∗],2

q[a∗],0

ε

f[a∗],1

ε

ε

T[a+]

qa,0

qa,1

ε

fa,0

a

xa := ε

xa := xaa
ε

xa := null

f[a∗],2

q[a∗],0

ε

f[a∗],1

ε

ε

qa,0

qa,1

ε

fa,0

a

xa := ε

xa := xaa

ε

xa := null

q[a+],0
ε

x[a+] := ε

x[a+] := x[a+]a

x[a+] := x[a+]a

Figure 2. PSST for the regex a; a� and a+

Validation 19/34

We conduct experiments to validate the formal semantics against the actual JavaS-
cript regex-string matching semantics.

For each regex e we construct Te and generate an input string w and the corres-
ponding output string w 0. We execute the following code in Node.js:

var x = w; console.log(x.match(reg)[1]);

And compare the output against w 0.

1110 nontrivial regexes, including all operators, are tested. We confirm consistency
of semantics on all of them.

Table of Content 20/34

� Background

� Real-world Regular Expression and PSST

� The String Logic and Decision Procedure

� Implementation

Our String Logic 21/34

Definition 2. (STR) The well-formed formula of the theory STR is defined as:

'================================ =
def

x= y

j z=x � y concatenation
jx2 e regular constraint
j y= extracti;e(x) extraction
j y= replaceAllpat;rep(x) replacement
j '^ 'j '_ 'j :'

where x; y; z are string variables, i 2N is the index of capturing groups, e;
pat 2 regex is the match pattern, and rep 2< is the replacement string. < is
defined as the concatenation of letters in � and references $i, for i2N.

Theorem 1. For each constraint y= extracti;pat(x) and y= replaceAllpat;rep(x).
an equivalent PSST T can be constructed. (Lemma 4.7)

Decidability 22/34

Theorem 2. STR is undecidable.

Proof. Followed directly from3 �

3. Anthony W. Lin and Pablo Barceló. 2016. String Solving with Word Equations and Trans-
ducers: Towards a Logic for Analysing Mutation XSS (POPL '16). ACM, 123�136

Sequent Calculus for STR 23/34

we handle STR constraints with a sound sequent calculus.

Sequent Calculus for STR 24/34

we handle STR constraints with a sound sequent calculus.

� It is shown in previous work4 that the preimage of concatenaction, �¡1(L(e)),
is computable.

� Is the preimage of a PSST computable?

4. T. Chen, Y. Chen, M. Hague, A. W. Lin, and Z. Wu, `What is decidable about string
constraints with the ReplaceAll function', PACMPL, vol. 2, no. POPL, p. 3:1-3:29, 2018

Regularity-Preserving Property 25/34

Theorem 3.

Given a PSST T and an FA A, we can compute an FA B in exponential time such
that B= T ¡1(A). (Lemma 5.5)

Proof. By simulation. Available in full version of the paper5. �

5. https://arxiv.org/pdf/2111.04298.pdf

Decidability 26/34

Theorem 4. STR is undecidable.

Proof. Followed directly from6 �

But. . .

Theorem 5. The straight-line fragment of STR is decidable.

6. Anthony W. Lin and Pablo Barceló. 2016. String Solving with Word Equations and Trans-
ducers: Towards a Logic for Analysing Mutation XSS (POPL '16). ACM, 123�136

Straight-line Fragment 27/34

Definition 3. A STR formula ' is said to be straight-line, if

1. it contains neither negation nor disjunction

2. ' can be ordered into a sequence of equations x1= t1; x2= t2; : : : ; xn= tn
plus regular constraints, such that x1; : : : ; xn are mutually distinct, and for
each i2f1; : : : ; ng, xi does not occur in t1; : : : ; ti¡1.

Let STRSL denote the set of straight-line STR formulas.

z= replaceAll(a+b)�;$1(x)^x= y � z ^ y 2 ab� � x

z

y

x

z

y

z= replaceAll(a+b)�;$1(y)^x= y � z ^ y 2 ab� �

Decision Procedure for STRSL 28/34

Every STRSL formula ' can be simplified into conjunctions of formulas of the
form z=x � y; y= T (x) and x2A, where T is a PSST and A is an FA.

Example. The following constraint:

x2Ax ^
y= T (x) ^ y 2Ay
z=x � y ^ z 2Az

is straight-line. We decide its satisfiability by iteratively computing pre-images
of regular constraints under � (concatenation) and T .

Step 1. For z=x � y and z 2Az, by previous results, we can compute �¡1(Az)=
f(x; y)jx � y 2Azg=

S
1
nAi;x

0 �Ai;y0 for some Ai;x
0 and Ai;y

0 .

Decision Procedure for STRSL 29/34

Example. The following constraint:

x2Ax ^
y= T (x) ^ y 2Ay
z=x � y ^ z 2Az

is straight-line. We decide its satisfiability by iteratively computing pre-images
of regular constraints under � (concatenation) and T .

x2Ax\Ai;x0 ^
y= T (x) ^ y 2Ay\Ai;y0

z=x � y////// /̂ z 2Az/////

Decision Procedure for STRSL 30/34

Example. The remaining constraint:

x2Ax\Ax0 ^
y= T (x) ^ y 2Ay\Ay0

Step 2. For y= T (x) and y 2Ay \Ay0 , we compute Ax
00=Pre(T ; Ay \Ay0) =

T ¡1(Ay\Ay0)= fxj T (x)2Ay\Ay0 g.

Decision Procedure for STRSL 31/34

Example. The remaining constraint:

x2Ax\Ax0 \Ax00

y= T (x)/////// /̂ y 2Ay\Ay0/////////

Step 3. We check the emptiness of Ax\Ax0 \Ax00. If the language is empty, the
constraint is unsatisfiable. Otherwise, it's satisfiable.

Our String Solver 32/34

OSTRICH: Optimistic STRIng Constraint Handler7

Version 1.1 now supports solving constraints with real-world regular expressions.

� The first and yet the only solver with such support

� The implementation supports more features like anchors.

7. https://github.com/uuverifiers/ostrich

Evaluation 33/34

RQ: How does OSTRICH compare to other solvers that can handle real-world
regular expression?

We evaluate OSTRICH on over 195 000 string constraints.

It greatly increase precision and efficiency (18x) compared to previous approxim-
ation-based methods.

Average Time OSTRICH ExpoSE+Z3
match (98,117 constraints) 1.57s 28.0s
replace (98,117 constraints) 6.62s 55.0s

Takeaway 34/34

In our work, we propose:

1. The first string theory and solver supporting regex and regex-dependent string-
manipulating functions.

2. A new automata model called Prioritized Streaming String Transducer (PSST)
to precisely capture the semantics of real-world regular expressions.

3. The proof of regularity-preserving property of PSST.

4. A sound sequent calculus for solving the string theory, which is complete for
straight-line fragment.

