
Data-driven Recurrent Set Learning for Non-termination Analysis

Zhilei Han, Fei He | School of Sostware, Tsinghua University

May 18, 2023

Non-termination Bugs

A program is non-terminating if there exist some inputs that cause the program
to execute indefinitely.

• Non-termination is usually considered a bug that could lead to severe con-
sequence.

• ~800 reported DoS vulnerabilities result from infinite loops.

• A recent empirical study found 445 non-termination bugs from 199 real-world
OSS projects.

[X. Shi, X. Xie, Y. Li, Y. Zhang, S. Chen, and X. Li ⋅ Large-scale analysis of non-termination bugs in real-world OSS projects ⋅ ESEC/FSE 2022]

Non-termination Bugs

A program is non-terminating if there exist some inputs that cause the program
to execute indefinitely.

• Non-termination is usually considered a bug that could lead to severe con-
sequence.

• ~800 reported DoS vulnerabilities result from infinite loops.

• A recent empirical study found 445 non-termination bugs from 199 real-world
OSS projects.

[X. Shi, X. Xie, Y. Li, Y. Zhang, S. Chen, and X. Li ⋅ Large-scale analysis of non-termination bugs in real-world OSS projects ⋅ ESEC/FSE 2022]

Non-termination Bugs

A program is non-terminating if there exist some inputs that cause the program
to execute indefinitely.

• Non-termination is usually considered a bug that could lead to severe con-
sequence.

• ~800 reported DoS vulnerabilities result from infinite loops.

• A recent empirical study found 445 non-termination bugs from 199 real-world
OSS projects.

[X. Shi, X. Xie, Y. Li, Y. Zhang, S. Chen, and X. Li ⋅ Large-scale analysis of non-termination bugs in real-world OSS projects ⋅ ESEC/FSE 2022]

Non-termination Bugs

A program is non-terminating if there exist some inputs that cause the program
to execute indefinitely.

• Non-termination is usually considered a bug that could lead to severe con-
sequence.

• ~800 reported DoS vulnerabilities result from infinite loops.

• A recent empirical study found 445 non-termination bugs from 199 real-world
OSS projects.

[X. Shi, X. Xie, Y. Li, Y. Zhang, S. Chen, and X. Li ⋅ Large-scale analysis of non-termination bugs in real-world OSS projects ⋅ ESEC/FSE 2022]

State-of-the-art: Recurrent Set

The standard non-termination analysis method to date is to synthesize a recur-
rent set.

A (closed) recurrent set is a set of states
R such that

1. R is reachable from an initial state,

2. If a state s in R is reached, all suc-
cessors of s remain in R,

3. Any state in R has at least a successor

The existence of R proves non-termina-
tion of a program.

s0

s1

s2

s3

s4

s5

s6

s′2

. . .

R

. . .

×Initial state

[H.-Y. Chen, B. Cook, C. Fuhs, K. Nimkar, and P. O'Hearn⋅ Proving Nontermination via Safety ⋅ TACAS 2014]

State-of-the-art: White-box Synthesis

Existing tools utilize white-box methods to synthesize a recurrent set by templat-
ization and SMT solving.

void foo(int i) {
while (i >= 0) {

i++;
}

}

∀i,R(i)→ i �0∧R(i +1)
Templatization ↓

∀i,a ⋅ i�b→ i �0∧a ⋅ (i +1)�b
Farkas' Lemma ↓

∃δ1,δ2, (((((((((δ1δ2)))))))))a =(((((((((−1a)))))))))∧(((((((((δ1δ2)))))))))b� (((((((((0b−a)))))))))
SMT Solver ↓

a=−1,b=0 a.k.a R(i)= i �0

However, this method does not work well on loops with non-linear assignments
or complicated control-flow.

Data-driven Approach

Black-box learning has been successfully applied to invariant generation and can
handle complex programs.

Basic Idea (CEGIS)

Teacher
Is 𝑅 valid for 𝑃?

Learner
Find 𝑅 consistent with 𝑆

Program 𝑃

Yes

No, add new samples to 𝑆

a candidate 𝑅

Pros

1. Agnostic of the concrete program

2. Able to prove aperiodic non-termination

Cons

Termination is a liveness prop-
erty. It seems impossible to obtain
a non-terminating sample.. .

Challenges on Sample Generation

Recall the definition of recurrent set.. .

1. R is reachable from an initial state → ?

2. If a state s in R is reached, all successors of s remain in R→ implicative sample

3. Any state in R has at least a successor → negative sample

void foo(int i) {
while (i >= 0) {

i++;
}

}

Candidate Valid? Sample Set
Initial - - ∅
Step 1 True No {(−1,neg)}
Step 2 False No {(−1,neg), ???}
Step 3

We cannot obtain a positve sample from an existential property!

Sample Speculation
--

A Walkthrough of Our Method: Overview

We analysize every loop L in the program and try to synthesize a recurrent set R.

while (k != 0) {
j = -2 * (k - 1) * k
k = j * k;
j = 0;

}

→←→ (true,k ≠0,k ʹ =−2 ⋅ (k −1) ⋅k ⋅k ∧ j ʹ = 0)

We proceed by the standard method, using a specialized decision tree learner.

Recall that R should satisfy:

1. ∃j,k.R(j,k)

2. ∀j,k.R(j,k)→k ≠0

3. ∀j,k, j ʹ,k ʹ.R(j,k)∧k ʹ =−2 ⋅ (k −1) ⋅k ⋅k ∧ j ʹ = 0→R(j ʹ,k ʹ)

[Kincaid, Z.; Reps, T.; Cyphert, J.⋅ Algebraic Program Analysis ⋅ CAV 2021]

A Walkthrough of Our Method

Analysized loop : (true,k ≠0,k ʹ =−2 ⋅ (k −1) ⋅k ⋅k ∧ j ʹ = 0)

Step 1

𝑗

𝑘

⊤ ∀k, j.⊤→k ≠0 is invalid!

Candidate Valid? Sample Set
Initial - - ∅
Step 1 True No {((0, 0), neg)}

(k =0, j =0) is a negative sample

A Walkthrough of Our Method

Analysized loop : (true,k ≠0,k ʹ =−2 ⋅ (k −1) ⋅k ⋅k ∧ j ʹ = 0)

Step 2

𝑗

𝑘

⊥ ∃k, j.⊤→⊥ is invalid

Candidate Valid? Sample Set
Initial - - ∅
Step 1 True No (0, 0)−
Step 2 False No (0, 0)−, (−1, 0)?+

We speculate a state (−1,0) from the reachable set
as positive sample.

Sample Speculation

To reduce overhead, the positive sample is selected from the states that satisfy the
following:

• it is reachable from an initial state,

• it does not belong to the set of already known terminating states, and

• it does not terminate within a fixed number of steps.

Sample Speculation

To reduce overhead, the positive sample is selected from the states that satisfy the
following:

• it is reachable from an initial state,

• it does not belong to the set of already known terminating states, and

• it does not terminate within a fixed number of steps.

Sample Speculation

To reduce overhead, the positive sample is selected from the states that satisfy the
following:

• it is reachable from an initial state,

• it does not belong to the set of already known terminating states, and

• it does not terminate within a fixed number of steps.

A Walkthrough of Our Method

Analysized loop : (true,k ≠0,k ʹ =−2 ⋅ (k −1) ⋅k ⋅k ∧ j ʹ = 0)

Step 3

𝑗

𝑘

𝑘 ≤ −1
∀j,k, j ʹ,k ʹ.k�−1∧k ʹ=−2⋅ (k−1) ⋅k ⋅k∧ j ʹ=0→k ʹ�−1
is invalid

Candidate Valid? Sample Set
Initial - - ∅
Step 1 True No (0, 0)−
Step 2 False No (0, 0)−, (−1, 0)?+
Step 3 k �−1 No (0, 0)−, (−1, 0)?+, (−1,0)→ (4, 0)

(−1,0)→ (4, 0) is an implicative sample.

A Walkthrough of Our Method

Analysized loop : (true,k ≠0,k ʹ =−2 ⋅ (k −1) ⋅k ⋅k ∧ j ʹ = 0)

Step 4

𝑗

𝑘

𝑘 ≤ −1 ∨ 𝑘 ≥ 4 k �−1∨k �4 is a valid recurrent set.

Candidate Valid? Sample Set
Initial - - ∅
Step 1 True No (0,0)−
Step 2 False No (0,0)−, (−1,0)?+
Step 3 k �−1 No (0,0)−, (−1,0)?+, (−1,0)→ (4, 0)
Step 4 k �−1∨k�4 Yes

What if. . .

The speculated positive sample (−1, 0) happens to be non-terminating.

Suppose we choose (1, 0) instead. Aster several iterations the sample set becomes

(0,0)−, (1,0)+, (1,0)→ (0, 0)

which is inconsistent. The learner cannot return any candidate!

Candidate Valid? Sample Set
Initial - - ∅
Step 1 True No (0, 0)−
Step 2 False No (0, 0)−, (1,0)?+
Step 3 k >0 No (0, 0)−, (1,0)+, (1,0)→ (0,0)
Step 4 ×

Backtracking

When the sample set becomes inconsistent, we backtrack by labeling the positive
sample as negative, select a fresh positive sample and proceed.

Is the learning algorithm guaranteed to converge?

Yes, if we select the samples in the right order!

Backtracking

When the sample set becomes inconsistent, we backtrack by labeling the positive
sample as negative, select a fresh positive sample and proceed.

Is the learning algorithm guaranteed to converge?

Yes, if we select the samples in the right order!

Backtracking

When the sample set becomes inconsistent, we backtrack by labeling the positive
sample as negative, select a fresh positive sample and proceed.

Is the learning algorithm guaranteed to converge?

Yes, if we select the samples in the right order!

Convergent Learning

We make sure to select a positive sample s with respect to a bound c such that.

1. s is bounded by c. (‖s‖� c)

2. c is incremented only when all possible states bounded by c has been sampled.

Suppose the decision tree learner has a fixed set of attributes. For any loop L, if
L admits a recurrent set expressible as the Boolean combination of these attrib-
utes, then the black-box learning algorithm is guaranteed to converge if the positive
sample is selected with respect to a bound c.

Theorem 1

Experimental Results

In comparison with state-of-the-art non-termination analysis tools, our prototype
implementation solves more cases of TermComp benchmarks and achieves up to
5x increase in performance.

Our Tool RevTerm Ultimate VeryMax
Solved Cases (111 total) 109 101 98 103
Speedup - 1.9x 5x 4.4x

Our algorithm is also the only one that actually works on non-linear programs.

[Chatterjee, K.; Goharshady, E. K.; Novotný, P.; Žikelić, Đ⋅ Proving Non-Termination by Program Reversal ⋅ PLDI 2021]

[Leike, J.; Heizmann, M⋅ Geometric Nontermination Arguments ⋅ TACAS 2018]

[Borralleras, C et al.⋅ Proving Termination Through Conditional Termination ⋅ TACAS 2017]

Thanks!

