Data-driven Recurrent Set Learning for Non-termination Analysis

Zhilei Han, Fei He | School of Software, Tsinghua University

May 18, 2023

Non-termination Bugs

A program is non-terminating if there exist some inputs that cause the program
to execute indefinitely.

[X. Shi, X. Xie, Y. Li, Y. Zhang, S. Chen, and X. Li - Large-scale analysis of non-termination bugs in real-world OSS projects - ESEC/FSE 2022]

Non-termination Bugs

A program is non-terminating if there exist some inputs that cause the program
to execute indefinitely.

« Non-termination is usually considered a bug that could lead to severe con-
sequence.

[X. Shi, X. Xie, Y. Li, Y. Zhang, S. Chen, and X. Li - Large-scale analysis of non-termination bugs in real-world OSS projects - ESEC/FSE 2022]

Non-termination Bugs

A program is non-terminating if there exist some inputs that cause the program
to execute indefinitely.

« Non-termination is usually considered a bug that could lead to severe con-
sequence.

« ~800 reported DoS vulnerabilities result from infinite loops.

[X. Shi, X. Xie, Y. Li, Y. Zhang, S. Chen, and X. Li - Large-scale analysis of non-termination bugs in real-world OSS projects - ESEC/FSE 2022]

Non-termination Bugs

A program is non-terminating if there exist some inputs that cause the program

to execute indefinitely.

« Non-termination is usually considered a bug that could lead to severe con-

sequence.

« ~800 reported DoS vulnerabilities result from infinite loops.

+ Arecent empirical study found 445 non-termination bugs from 199 real-world

OSS projects.

[X. Shi, X. Xie, Y. Li, Y. Zhang, S. Chen, and X. Li - Large-scale analysis of non-termination bugs in real-world OSS projects - ESEC/FSE 2022]

State-of-the-art: Recurrent Set

The standard non-termination analysis method to date is to synthesize a recur-
rent set.

A (closed) recurrent set is a set of states
R such that >,

Initial state X 0 R

S0

1. R is reachable from an initial state,

S1

2. If a state s in R is reached, all suc-
cessors of s remain in R,

3. Any state in R has at least a successor

S5

The existence of R proves non-termina-
tion of a program.

[H.-Y. Chen, B. Cook, C. Fuhs, K. Nimkar, and P. O'Hearn- Proving Nontermination via Safety - TACAS 2014]

State-of-the-art: White-box Synthesis

Existing tools utilize white-box methods to synthesize a recurrent set by templat-
ization and SMT solving.

Vi,R(i)— i=0AR(i+1)
void foo(int i) { o | Templat.izationl
while (i >= 0) { Vija-isb—iz0na-(i+1)<b

it+; Farkas' Lemma l

o -1 19} 0
) e 5 o=)2 (5)= (5o
¥ SMTSoIverl
a=-1,b=0ak.aR(i)=i=0

However, this method does not work well on loops with non-linear assignments
or complicated control-flow.

Data-driven Approach

Black-box learning has been successfully applied to invariant generation and can
handle complex programs.

Basic Idea (CEGIS)

No, add new samples to S

Program P
\
Teacher Learner
Is R valid for P? Find R consistent with S
\
Yes a candidate R
Pros Cons
1. Agnostic of the concrete program Termination is a liveness prop-

erty. It seems impossible to obtain

2. Able to prove aperiodic non-termination I
a non-terminating sample...

Challenges on Sample Generation

Recall the definition of recurrent set...
1. R is reachable from an initial state — ?
2. If astate sin Ris reached, all successors of s remain in R — implicative sample

3. Any state in R has at least a successor — negative sample

void foo(int i) { Candidate [Valid? |Sample Set
while (i >= 0) { Initial |- - D
i++; Step 1 [True No {(-1,neg)}
} Step 2 |[False No {(-1,neg), 777}
} Step 3

We cannot obtain a positve sample from an existential property!

Sample Speculation

A Walkthrough of Our Method: Overview

We analysize every loop L in the program and try to synthesize a recurrent set R.

while (k != 0) {
j=-2% (k-1 *k
k = j * k; —> (true,k+#0,k'=-2-(k-1)-k-knj =0)
, j=0;
We proceed by the standard method, using a specialized decision tree learner.
Recall that R should satisfy:
1.3/, k.R(G, k)
2.Vj,k.R(j,k)— k#0
3.Vj,k,j, kK R(j,kynk'=-2-(k-1)-k-knj=0—R(j, k)

[Kincaid, Z.; Reps, T.; Cyphert, J.- Algebraic Program Analysis - CAV 2021]

A Walkthrough of Our Method

Analysized loop : (true,k#0,k'=-2-(k-1)-k-kaj =0)

Step 1

Vk,j. T— k#0 is invalid!

Candidate | Valid? | Sample Set
Initial | - - %)
Step 1| True No { }

-k (k=0,j=0) is a negative sample

A Walkthrough of Our Method

Analysized loop : (true,k#0,k'=-2-(k-1)-k-kaj =0)

Step 2
Ty ik, j.T— L is invalid
Candidate | Valid? | Sample Set
Initial |- -)
Step 1| True No
Step 2|False No (0,0)7,(-1,0)3
| ~ 1. We speculate a state (-1,0) from the reachable set
as positive sample.

Sample Speculation

To reduce overhead, the positive sample is selected from the states that satisfy the
following;:

« it is reachable from an initial state,

Sample Speculation

To reduce overhead, the positive sample is selected from the states that satisfy the
following;:

« it is reachable from an initial state,

« it does not belong to the set of already known terminating states, and

Sample Speculation

To reduce overhead, the positive sample is selected from the states that satisfy the
following;:

« it is reachable from an initial state,
« it does not belong to the set of already known terminating states, and

« it does not terminate within a fixed number of steps.

A Walkthrough of Our Method

Analysized loop : (true,k+#0,k'=-2-(k-1)-k-kaj =0)

Step 3
I, Vi k,j, k' ks-1nk'=-2-(k-1)-k-knj =0—k'<-1
k<-1 sinvalid
Candidate | Valid? | Sample Set

Initial |- - D

Step 1| True No

Step 2|False No (0,0)7,(-1,0)7

— .k Step 3| k<-1 No (0,0)7,(-1,0)7,(-1,0) — (4,0)

(-1,0) — (4,0) is an implicative sample.

A Walkthrough of Our Method

Analysized loop : (true,k+#0,k'=-2-(k-1)-k-kaj =0)

Step 4
7y k<-1Vk>4 k<-1vk=4is avalid recurrent set.
Candidate |Valid?|Sample Set
Initial |- - %)
Step 1|True No
Step 2|False No (0,0)7,(-1,0)3
"V/;’—_—\\\‘——'k Step 3| k<-1 No (0,0)7,(-1,0)3,(-1,0) — (4,0)

Step4|ks-1vk=4|Yes

The speculated positive sample (-1,0) happens to be non-terminating.

Suppose we choose (1,0) instead. After several iterations the sample set becomes
(0,0)7,(1,0)",(1,0) — (0, 0)

which is inconsistent. The learner cannot return any candidate!

Candidate | Valid? | Sample Set
Initial |- - %)
Step 1|True No
Step 2|False No (0,0)7,(1,0)3
Step 3|k=>0 No (0,0)7,(1,0)%,(1,0) —(0,0)
Step 4| x

Backtracking

When the sample set becomes inconsistent, we backtrack by labeling the positive
sample as negative, select a fresh positive sample and proceed.

Backtracking

When the sample set becomes inconsistent, we backtrack by labeling the positive
sample as negative, select a fresh positive sample and proceed.

Is the learning algorithm guaranteed to converge?

Backtracking

When the sample set becomes inconsistent, we backtrack by labeling the positive
sample as negative, select a fresh positive sample and proceed.

Is the learning algorithm guaranteed to converge?

Yes, if we select the samples in the right order!

Convergent Learning

We make sure to select a positive sample s with respect to a bound ¢ such that.
1. sis bounded by c. (| s] <¢)

2. cis incremented only when all possible states bounded by ¢ has been sampled.

Theorem 1

Suppose the decision tree learner has a fixed set of attributes. For any loop L, if
L admits a recurrent set expressible as the Boolean combination of these attrib-
utes, then the black-box learning algorithm is guaranteed to converge if the positive
sample is selected with respect to a bound c.

Experimental Results

In comparison with state-of-the-art non-termination analysis tools, our prototype
implementation solves more cases of TermComp benchmarks and achieves up to
5x increase in performance.

Our Tool RevTerm Ultimate |VeryMax
Solved Cases (111 total) 109 101 98 103
Speedup - 1.9x 5X 4.4x

Our algorithm is also the only one that actually works on non-linear programs.

[Chatterjee, K.; Goharshady, E. K.; Novotny, P.; Zikeli¢, D- Proving Non-Termination by Program Reversal - PLDI 2021]

[Leike, J.; Heizmann, M- Geometric Nontermination Arguments - TACAS 2018]

[Borralleras, C et al.- Proving Termination Through Conditional Termination - TACAS 2017]

Thanks!

