Towards Solving String Constraints with Real-world

Regular Expressions

Zhilei Hanl

School of Software, Tsinghua University
CCF Chinasoft, 24. December, 2021

1. Based on the POPL22 paper Solving String Constraints with Regex-Dependent Functions through Transducers
with Priorities and Variables by Taolue Chen, Alejandro Flores-Lamas, Matthew Hague, Zhilei Han, Denghang Hu,
Shuanglong Kan, Anthony W. Lin, Philipp Riimmer, and Zhilin Wu.

Motivation 2/22

e The string type is ubiquitous in practical programs.
e Abundant operations for manipulating strings are provided
o replace, extract, match. ..

o split, join, indexof . ..

Motivation

e The string type is ubiquitous in practical programs.
e Abundant operations for manipulating strings are provided
e Sadly, strings are vulnerable to attacks?

Injection Cross-Site Scripting (XSS)

String query = "SELECT * FROM accounts WHERE custID=’" String page += "<input name=’creditcard’ type=’TEXT’ value=’"

. + . n n + n ,>" .
+ request.getParameter("id") + ">"; request.getParameter ("CC") H

Insecure Deserialization

LOGYJ @

2. https://owasp.org/www-project-top-ten/2017/Top_10

Motivation

Q1: How to analyze and verify string-manipulating programs?

One powerful method is symbolic execution.

// XS5 vulnerable
function instantiate(info) {
var template =
"<hl>User{{userName}}</h1>"
var result = template.replace("{{bic}}", info.bio);
result = template.replace("{{userName}}", info.username);
return result;

}

—> x1 =replaceAll(temp, “{{bio}}”, bio) A x5 =replaceAll(x1, “{{userName}}” user) Az2s € R

with attack pattern R represented as a regular language.

Motivation 5/22

Q2: Are existing string theory enough for verifying practical programs?

No.

One of the major reasons is: the semantics of regular expressions in real-world
programming languages are different from classical regular expressions

o //lazy matching: versus
o bs and

var t = replace(s, /(+)/g, $2);
o

s.match(/ "a+(b*)c+$/);

Table of Content 6/22

e Real-world Regular Expressions
e PSST
e Our String Logic and Decision Procedure

e Implementation

Real-world Regular Expression 7/22

Definition 1. (Real-world Regular Expression, regex)

A real-world regular expression is defined as:

e== 0lclalfe+d]|le-dl]
(e) | Capturing Group
[e*] | [e*] | Kleene Star
leT] | [eT"]] Kleene Plus

where a is a letter in alphabet >

Note loop operator has greedy and lazy variants.

Nonstandard Semantics

The semantics of regex is nonstandard in matching (though its language is reg-
ular).

Example. (Greedy/Lazy Matching)

In Javascript, the following statement:
var result = “<script>foo</script>".match(/<(.*)>/)[1]
returns “script>foo< /script”, while

var result = “<script>foo</script>".match(/<(.*?)>/)[1]

returns “script’.

Nonstandard Semantics

Example. (Nested Repetition)

In Javascript, some operators’ behaviour depends on its context. For example, the
following statement:

var result = “aaa".match(/(a*7)/)[1]
returns “=", while

var result = “aaa".match(/(a*7)*/)[1]

returns “a".

(The ECMAScript standard? prohibits the match of e in €* to be ¢)

3. https://262.ecma-international.org/12.0/#sec-runtime-semantics-
repeatmatcher-abstract-operation

Nonstandard Semantics

Example. (Nested Repetition)

In Javascript, some operators’ behaviour depends on its context. For example, the
following statement:

var result = “aaa".match(/(a*)*/)[1]

returns “aaa”, while

var result = “aaa".match(/(a*7)*/)[1]

returns “a".

(The ECMAScript standard prohibits the match of e as in e* to be ¢)

It's hard to give a denotational semantics to regex!

Operational semantics?

PSST 11/22

PSST extends finite state transducer (Mealy machine) with:
e Priorities: nondeterministic transitions are ordered

e Memory: a fixed number of memory cell containing unbounded string.

tef{o,---,9} ¢efo,---,9}
x1 = 21l To 1= xol

\ € ¢ e {0,- } € Q € N
@ T :=¢€ >© —xlé _—:;2_:_5_ > ____>

Figure 1. PSST 7 to extract the matching of the first capturing group in (\d+)(\d*)

A run of T on input string 2050 is:

Tri:=€ ri1:=x12 x1:=x10 r1:=x15 x1:=x10 To:=—¢ €

qo E > 41 5 7 42 0 7 42 - 7 42 0 q2 E > 43 — (a4,

~

Construction of PSST 12/22

We construct a PSST for each regex inductively as its operational semantics.

T Tiat)
D,
D parmwer=r
€ixa = Eliﬂa =&
Ty i= Tal
al|xq :=x4a a | %a La
Llat] *= Tlat]@
€
2
ZTq := null
T, = null

Figure 2. PSST for the RegEx a,a* and a™

Our String Logic

Definition 2. (STR)
The well-formed formula of the theory STR is defined as:

def
Y =Y
Z2=x-Y concatenation
reEe regular constraint
y = extract; o(x) extraction

y = replaceAll ¢ ;ep(x) replacement

p N\ eV el p

where x, vy, z are string variables, 1 € N is the index of capturing groups, €,
pat € regex is the match pattern, and rep € R is the replacement string. R is
defined as the concatenation of letters in > and references $i, for i € IN.

Our String Logic

Semantics of regex-dependent functions

1. The extract; o(x) function returns matched substring of the i-th capturing
group of e, if x € L(e). Otherwise, the return value is undefined.

Example. extract; .(z) can be used to model many string functions like
str.match(reg) and reg.exec(str) in Javascript.

var y = “aba".match(/(a+b)*/)[1]
can be modeled as y=extract; 5741 p)-5+(""aba’)
2. The replaceAll,,¢ op(x) function identifies all matches of pat in 2 and replace

them with string specified by rep. Each reference $i in rep will be replaced
by the matching of the i-th capturing group in pat.

Straight-line Fragment

We introduce the straight-line fragment since the general STR is undecidable.

Definition 3. A STR formula ¢ is said to be straight-line, if

1. it contains neither negation nor disjunction

2. can be ordered into a sequence of equations x1 =1t1,x9="19,...,2, =1y,
plus regular constraints, such that x1, ..., x, are mutually distinct, and for
eachic€{l,...,n}, x; does not occur inty,... ,t; 1.

Let STRgr, denote the set of straight-line STR formulas.

z=replaceAll oy p)« s1(Z) ANz =y -2 X
z=replaceAll o1 p)« s1(y) Ne =y -2 ANyc€ab®

Decision Procedure for STRgj, 16/22

Theorem 1. For each constraint y = extract; pat(x) and y = replaceAll ¢ vop (7).
an equivalent PSST ‘T can be constructed. (Lemma 4.7)

Then, every STRgr, formula ¢ can be simplified into conjunctions of formulas of
the form z=x-y,y="7T (z) and x € A, where T is a PSST and A is an FA.

Decision Procedure for STRgj, 17/22

Example. The following constraint:

reA, N
y=T(x) N yeA,
z=x-y N z€A,

is straight-line. We decide its satisfiability by iteratively computing pre-images
of regular constraints under - (concatenation) and 7.

Step 1. For z=x2 -y and 2 € A., we compute Pre(-, A.)=-"1(A.) ={(z, y)]
r-yecA,t.

It is shown in previous work* that Pre(-, A,) can be decomposed, i.e. Pre(-,

A.)=A) x Aj, for some A} and A},

4. T. Chen, Y. Chen, M. Hague, A. W. Lin, and Z. Wu, 'What is decidable about string
constraints with the ReplaceAll function’, PACMPL, vol. 2, no. POPL, p. 3:1-3:29, 2018

Decision Procedure for STRgj, 18/22

Example. The remaining constraint:

recA,NAL A
y=T(z) N yeA,NA,

pRIy N 2R A

Step 2. For y="7(x) and y € A, N A}, we compute A =Pre(7T,A,NA))=
T HAynAy) ={z|T(z) € AyN Ay}

Theorem 2. (Regularity-Preserving Property of PSST)

Given a PSST T and an FA A, we can compute an FA B in exponential time such
that B=T '(A). (Lemma 5.5)

Decision Procedure for STRgj, 19/22

Example. The remaining constraint:

recA,NALNAY

yFI) A yE AT,

Step 3. We check the emptiness of A, N Al N A/ If the language is empty, the
constraint is unsatisfiable. Otherwise, it's satisfiable.

Our String Solver 20/22

OSTRICH: Optimistic STRIng Constraint Handler®

Version 1.1 now supports solving constraints with real-world regular expressions.

e The first and yet the only solver with such support
e We evaluate OSTRICH on over 195 000 string constraints.

It greatly increase precision and efficiency compared to previous approxima-
tion-based methods.

e The implementation supports more features like anchors.

5. https://github.com/uuverifiers/ostrich

Ta keaway 21/22

e String functions dependent on Real-world Regular Expressions can be modeled
by PSST

e The pre-image of a PSST under regular language is computable, thus the
straight-line fragment is decidable.

e Our solver can be used with software verification techniques (e.g. symbolic
execution) to efficiently verify real-world string-manipulating programs.

For more formalism and proofs, check out our POPL22 paper:

Solving String Constraints with Regex-Dependent Functions through
Transducers with Priorities and Variables

available at https://arxiv.org/abs/2111.04298

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T = (Q), qo, >, X, 0,7, E, F'), where

e () is a finite set of states, qy € () is the initial state

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T = (Q), qo, >, X, 0,7, E, F'), where

e () is a finite set of states, qy € () is the initial state

e Y. /s the input and output alphabet

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T = (Q), qo, >, X, 0,7, E, F'), where

e () is a finite set of states, qy € () is the initial state
e Y. /s the input and output alphabet

e X is a finite set of string variables

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T = (Q), qo, >, X, 0,7, E, F'), where

e () is a finite set of states, qy € () is the initial state
e Y. /s the input and output alphabet
e X is a finite set of string variables

o §€Q x X — (defines the non-c transitions as well as their priorities (from
highest to lowest)

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T = (Q), qo, >, X, 0,7, E, F'), where

() is a finite set of states, qy € () is the initial state
>, Is the input and output alphabet
X is a finite set of string variables

§ € () x X — @ defines the non-c transitions as well as their priorities (from
highest to lowest)

TE€Q— Q x Q such that forevery g€ Q, if T(q) = (P1; P,), then PN Py =),
(Intuitively, 7(q) = (P1; P») specifies the e-transitions at q. e-transitions to
the states in P; (resp.) have higher (resp. lower) priorities than non-c-
transitions out of q.)

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T = (Q), qo, >, X, 0,7, E, F'), where

e () is a finite set of states, qy € () is the initial state
e Y. /s the input and output alphabet
e X is a finite set of string variables

o §€Q x X — (defines the non-c transitions as well as their priorities (from
highest to lowest)

o 7€Q— QX Q suchthat forevery g€ Q, if T(q) = (P1; P,), then PN Py =),
(Intuitively, 7(q) = (P1; P») specifies the e-transitions at q. e-transitions to
the states in P; (resp.) have higher (resp. lower) priorities than non-c-
transitions out of q.)

e [associates with each transition a string-variable assignment function, i.e., E
is partial function from () x ¢ x @) to X — (X UX)* such that its domain
is the set of tuples (q,a,q’) satisfying that either a € > and ¢' € 6(q, a) or
a=c¢ and q' € 7(q)

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T = (Q), qo, >, X, 0,7, E, F'), where

e () is a finite set of states, qy € () is the initial state
e Y. /s the input and output alphabet
e X is a finite set of string variables

o §€Q x X — (defines the non-c transitions as well as their priorities (from
highest to lowest)

o 7€Q— QX Q suchthat forevery g€ Q, if T(q) = (P1; P,), then PN Py =),
(Intuitively, 7(q) = (P1; P») specifies the e-transitions at q. e-transitions to
the states in P; (resp.) have higher (resp. lower) priorities than non-c-
transitions out of q.)

e [associates with each transition a string-variable assignment function, i.e., E
is partial function from () x ¢ x @) to X — (X UX)* such that its domain
is the set of tuples (q,a,q’) satisfying that either a € > and ¢' € 6(q, a) or
a=c¢ and q' € 7(q)

e [s the output function, which is a partial function from () to (X UX)*

