
Towards Solving String Constraints with Real-world

Regular Expressions

Zhilei Han1

School of Software, Tsinghua University

CCF Chinasoft, 24. December, 2021

1. Based on the POPL22 paper Solving String Constraints with Regex-Dependent Functions through Transducers
with Priorities and Variables by Taolue Chen, Alejandro Flores-Lamas, Matthew Hague, Zhilei Han, Denghang Hu,
Shuanglong Kan, Anthony W. Lin, Philipp Rümmer, and Zhilin Wu.

Motivation 2/22

� The string type is ubiquitous in practical programs.

� Abundant operations for manipulating strings are provided

� replace, extract, match . . .

� split, join, indexof . . .

Motivation 3/22

� The string type is ubiquitous in practical programs.

� Abundant operations for manipulating strings are provided

� Sadly, strings are vulnerable to attacks2

Injection Cross-Site Scripting (XSS)

Insecure Deserialization

2. https://owasp.org/www-project-top-ten/2017/Top_10

Motivation 4/22

Q1: How to analyze and verify string-manipulating programs?

One powerful method is symbolic execution.

) x1= replaceAll(temp; �{{bio}}�; bio)^x2= replaceAll(x1; �ffuserNamegg�; user)^x22R

with attack pattern R represented as a regular language.

Motivation 5/22

Q2: Are existing string theory enough for verifying practical programs?

No.

One of the major reasons is: the semantics of regular expressions in real-world
programming languages are different from classical regular expressions

� greedy/lazy matching: a* versus a*?

� capturing groups and references:

var t = replace(s, /((ab*?)+)/g, $2);

� anchors:

s.match(/^a+(b*)c+$/);

Table of Content 6/22

� Real-world Regular Expressions

� PSST

� Our String Logic and Decision Procedure

� Implementation

Real-world Regular Expression 7/22

Definition 1. (Real-world Regular Expression, regex)

A real-world regular expression is defined as:

e================================ =
def ;j "j aj [e+ e] j [e � e] j

(e) j Capturing Group

[e�] j [e�?] j Kleene Star

[e+] j [e+?] j Kleene Plus

where a is a letter in alphabet �

Note loop operator has greedy and lazy variants.

Nonstandard Semantics 8/22

The semantics of regex is nonstandard in matching (though its language is reg-
ular).

Example. (Greedy/Lazy Matching)

In Javascript, the following statement:

var result = �<script>foo</script>�.match(/<(.*)>/)[1]

returns �script>foo</script�, while

var result = �<script>foo</script>�.match(/<(.*?)>/)[1]

returns �script�.

Nonstandard Semantics 9/22

Example. (Nested Repetition)

In Javascript, some operators' behaviour depends on its context. For example, the
following statement:

var result = �aaa�.match(/(a*?)/)[1]

returns �e�, while

var result = �aaa�.match(/(a*?)*/)[1]

returns �a�.

(The ECMAScript standard3 prohibits the match of e in e� to be ")

3. https://262.ecma-international.org/12.0/#sec-runtime-semantics-
repeatmatcher-abstract-operation

Nonstandard Semantics 10/22

Example. (Nested Repetition)

In Javascript, some operators' behaviour depends on its context. For example, the
following statement:

var result = �aaa�.match(/(a*)*/)[1]

returns �aaa�, while

var result = �aaa�.match(/(a*?)*/)[1]

returns �a�.

(The ECMAScript standard prohibits the match of e as in e� to be ")

It's hard to give a denotational semantics to regex!

Operational semantics?

PSST 11/22

PSST extends finite state transducer (Mealy machine) with:

� Priorities: nondeterministic transitions are ordered

� Memory: a fixed number of memory cell containing unbounded string.

q2
εq1

` ∈ {0, · · · , 9}
x1 := x1`

x1 := x1`

q3 q4
ε

` ∈ {0, · · · , 9}

F (q4) = x1

q0
ε

x1 := ε x2 := ε

x2 := x2`
` ∈ {0, · · · , 9}

Figure 1. PSST T to extract the matching of the first capturing group in (nd+)(nd*)

A run of T on input string 2050 is:

q0!!! !
"

x1:="
q1!!! !

2

x1:=x12
q2!!! !

0

x1:=x10
q2!!! !

5

x1:=x15
q2!!! !

0

x1:=x10
q2!!! !

"

x2:="
q3!!!!!!!!

"
q4;

Construction of PSST 12/22

We construct a PSST for each regex inductively as its operational semantics.

Ta

qa,0

qa,1

ε

fa,0

a

xa := ε

xa := xaa

T[a∗]

qa,0

qa,1

ε

fa,0

a

xa := ε

xa := xaa

ε

xa := null

f[a∗],2

q[a∗],0

ε

f[a∗],1

ε

ε

T[a+]

qa,0

qa,1

ε

fa,0

a

xa := ε

xa := xaa
ε

xa := null

f[a∗],2

q[a∗],0

ε

f[a∗],1

ε

ε

qa,0

qa,1

ε

fa,0

a

xa := ε

xa := xaa

ε

xa := null

q[a+],0
ε

x[a+] := ε

x[a+] := x[a+]a

x[a+] := x[a+]a

Figure 2. PSST for the RegEx a; a� and a+

Our String Logic 13/22

Definition 2. (STR)

The well-formed formula of the theory STR is defined as:

'================================ =
def

x= y

j z=x � y concatenation
jx2 e regular constraint
j y= extracti;e(x) extraction
j y= replaceAllpat;rep(x) replacement
j '^ 'j '_ 'j :'

where x; y; z are string variables, i 2N is the index of capturing groups, e;
pat 2 regex is the match pattern, and rep 2< is the replacement string. < is
defined as the concatenation of letters in � and references $i, for i2N.

Our String Logic 14/22

Semantics of regex-dependent functions

1. The extracti;e(x) function returns matched substring of the i-th capturing
group of e, if x2L(e). Otherwise, the return value is undefined.

Example. extracti;e(x) can be used to model many string functions like
str.match(reg) and reg.exec(str) in Javascript.

var y = �aba�.match(/(a+b)*/)[1]

can be modeled as y= extract1;��?(a+b)���(00aba00)

2. The replaceAllpat;rep(x) function identifies all matches of pat in x and replace
them with string specified by rep. Each reference $i in rep will be replaced
by the matching of the i-th capturing group in pat.

Straight-line Fragment 15/22

We introduce the straight-line fragment since the general STR is undecidable.

Definition 3. A STR formula ' is said to be straight-line, if

1. it contains neither negation nor disjunction

2. ' can be ordered into a sequence of equations x1= t1; x2= t2; : : : ; xn= tn
plus regular constraints, such that x1; : : : ; xn are mutually distinct, and for
each i2f1; : : : ; ng, xi does not occur in t1; : : : ; ti¡1.

Let STRSL denote the set of straight-line STR formulas.

z= replaceAll(a+b)�;$1(x)^x= y � z �
z= replaceAll(a+b)�;$1(y)^x= y � z ^ y 2 ab� �

Decision Procedure for STRSL 16/22

Theorem 1. For each constraint y= extracti;pat(x) and y= replaceAllpat;rep(x).
an equivalent PSST T can be constructed. (Lemma 4.7)

Then, every STRSL formula ' can be simplified into conjunctions of formulas of
the form z=x � y; y= T (x) and x2A, where T is a PSST and A is an FA.

Decision Procedure for STRSL 17/22

Example. The following constraint:

x2Ax ^
y= T (x) ^ y 2Ay
z=x � y ^ z 2Az

is straight-line. We decide its satisfiability by iteratively computing pre-images
of regular constraints under � (concatenation) and T .

Step 1. For z= x � y and z 2Az, we compute Pre(�; Az) = �¡1(Az) = f(x; y)j
x � y 2Azg.

It is shown in previous work4 that Pre(�; Az) can be decomposed, i.e. Pre(�;
Az)=Ax

0 �Ay0 for some Ax
0 and Ay

0 .

4. T. Chen, Y. Chen, M. Hague, A. W. Lin, and Z. Wu, `What is decidable about string
constraints with the ReplaceAll function', PACMPL, vol. 2, no. POPL, p. 3:1-3:29, 2018

Decision Procedure for STRSL 18/22

Example. The remaining constraint:

x2Ax\Ax0 ^
y= T (x) ^ y 2Ay\Ay0

z=x � y////// /̂ z 2Az/////

Step 2. For y= T (x) and y 2Ay \Ay0 , we compute Ax
00=Pre(T ; Ay \Ay0) =

T ¡1(Ay\Ay0)= fxj T (x)2Ay\Ay0 g.

Theorem 2. (Regularity-Preserving Property of PSST)

Given a PSST T and an FA A, we can compute an FA B in exponential time such
that B= T ¡1(A). (Lemma 5.5)

Decision Procedure for STRSL 19/22

Example. The remaining constraint:

x2Ax\Ax0 \Ax00

y= T (x)/////// /̂ y 2Ay\Ay0/////////

Step 3. We check the emptiness of Ax\Ax0 \Ax00. If the language is empty, the
constraint is unsatisfiable. Otherwise, it's satisfiable.

Our String Solver 20/22

OSTRICH: Optimistic STRIng Constraint Handler5

Version 1.1 now supports solving constraints with real-world regular expressions.

� The first and yet the only solver with such support

� We evaluate OSTRICH on over 195 000 string constraints.

It greatly increase precision and efficiency compared to previous approxima-
tion-based methods.

� The implementation supports more features like anchors.

5. https://github.com/uuverifiers/ostrich

Takeaway 21/22

� String functions dependent on Real-world Regular Expressions can be modeled
by PSST

� The pre-image of a PSST under regular language is computable, thus the
straight-line fragment is decidable.

� Our solver can be used with software verification techniques (e.g. symbolic
execution) to efficiently verify real-world string-manipulating programs.

For more formalism and proofs, check out our POPL22 paper:

Solving String Constraints with Regex-Dependent Functions through
Transducers with Priorities and Variables

available at https://arxiv.org/abs/2111.04298

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T =(Q; q0;�; X ; �; � ; E; F), where

� Q is a finite set of states, q02Q is the initial state

� � is the input and output alphabet

� X is a finite set of string variables

� � 2Q��!Q� defines the non-" transitions as well as their priorities (from
highest to lowest)

� � 2Q!Q��Q� such that for every q2Q, if �(q)=(P1;P2), then P1\P2=;,
(Intuitively, �(q) = (P1; P2) specifies the "-transitions at q. "-transitions to
the states in P1 (resp. P2) have higher (resp. lower) priorities than non-"-
transitions out of q.)

� E associates with each transition a string-variable assignment function, i.e., E
is partial function from Q��"�Q to X! (X [�)� such that its domain
is the set of tuples (q; a; q 0) satisfying that either a2� and q 02 �(q; a) or
a= " and q 02 �(q)

� F is the output function, which is a partial function from Q to (X [�)�

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T =(Q; q0;�; X ; �; � ; E; F), where

� Q is a finite set of states, q02Q is the initial state

� � is the input and output alphabet

� X is a finite set of string variables

� � 2Q��!Q� defines the non-" transitions as well as their priorities (from
highest to lowest)

� � 2Q!Q��Q� such that for every q2Q, if �(q)=(P1;P2), then P1\P2=;,
(Intuitively, �(q) = (P1; P2) specifies the "-transitions at q. "-transitions to
the states in P1 (resp. P2) have higher (resp. lower) priorities than non-"-
transitions out of q.)

� E associates with each transition a string-variable assignment function, i.e., E
is partial function from Q��"�Q to X! (X [�)� such that its domain
is the set of tuples (q; a; q 0) satisfying that either a2� and q 02 �(q; a) or
a= " and q 02 �(q)

� F is the output function, which is a partial function from Q to (X [�)�

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T =(Q; q0;�; X ; �; � ; E; F), where

� Q is a finite set of states, q02Q is the initial state

� � is the input and output alphabet

� X is a finite set of string variables

� � 2Q��!Q� defines the non-" transitions as well as their priorities (from
highest to lowest)

� � 2Q!Q��Q� such that for every q2Q, if �(q)=(P1;P2), then P1\P2=;,
(Intuitively, �(q) = (P1; P2) specifies the "-transitions at q. "-transitions to
the states in P1 (resp. P2) have higher (resp. lower) priorities than non-"-
transitions out of q.)

� E associates with each transition a string-variable assignment function, i.e., E
is partial function from Q��"�Q to X! (X [�)� such that its domain
is the set of tuples (q; a; q 0) satisfying that either a2� and q 02 �(q; a) or
a= " and q 02 �(q)

� F is the output function, which is a partial function from Q to (X [�)�

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T =(Q; q0;�; X ; �; � ; E; F), where

� Q is a finite set of states, q02Q is the initial state

� � is the input and output alphabet

� X is a finite set of string variables

� � 2Q��!Q� defines the non-" transitions as well as their priorities (from
highest to lowest)

� � 2Q!Q��Q� such that for every q2Q, if �(q)=(P1;P2), then P1\P2=;,
(Intuitively, �(q) = (P1; P2) specifies the "-transitions at q. "-transitions to
the states in P1 (resp. P2) have higher (resp. lower) priorities than non-"-
transitions out of q.)

� E associates with each transition a string-variable assignment function, i.e., E
is partial function from Q��"�Q to X! (X [�)� such that its domain
is the set of tuples (q; a; q 0) satisfying that either a2� and q 02 �(q; a) or
a= " and q 02 �(q)

� F is the output function, which is a partial function from Q to (X [�)�

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T =(Q; q0;�; X ; �; � ; E; F), where

� Q is a finite set of states, q02Q is the initial state

� � is the input and output alphabet

� X is a finite set of string variables

� � 2Q��!Q� defines the non-" transitions as well as their priorities (from
highest to lowest)

� � 2Q!Q��Q� such that for every q2Q, if �(q)=(P1;P2), then P1\P2=;,
(Intuitively, �(q) = (P1; P2) specifies the "-transitions at q. "-transitions to
the states in P1 (resp. P2) have higher (resp. lower) priorities than non-"-
transitions out of q.)

� E associates with each transition a string-variable assignment function, i.e., E
is partial function from Q��"�Q to X! (X [�)� such that its domain
is the set of tuples (q; a; q 0) satisfying that either a2� and q 02 �(q; a) or
a= " and q 02 �(q)

� F is the output function, which is a partial function from Q to (X [�)�

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T =(Q; q0;�; X ; �; � ; E; F), where

� Q is a finite set of states, q02Q is the initial state

� � is the input and output alphabet

� X is a finite set of string variables

� � 2Q��!Q� defines the non-" transitions as well as their priorities (from
highest to lowest)

� � 2Q!Q��Q� such that for every q2Q, if �(q)=(P1;P2), then P1\P2=;,
(Intuitively, �(q) = (P1; P2) specifies the "-transitions at q. "-transitions to
the states in P1 (resp. P2) have higher (resp. lower) priorities than non-"-
transitions out of q.)

� E associates with each transition a string-variable assignment function, i.e., E
is partial function from Q��"�Q to X! (X [�)� such that its domain
is the set of tuples (q; a; q 0) satisfying that either a2� and q 02 �(q; a) or
a= " and q 02 �(q)

� F is the output function, which is a partial function from Q to (X [�)�

Definition. (Prioritized Streaming String Transducers) A prioritized streaming
string transducer is an octuple T =(Q; q0;�; X ; �; � ; E; F), where

� Q is a finite set of states, q02Q is the initial state

� � is the input and output alphabet

� X is a finite set of string variables

� � 2Q��!Q� defines the non-" transitions as well as their priorities (from
highest to lowest)

� � 2Q!Q��Q� such that for every q2Q, if �(q)=(P1;P2), then P1\P2=;,
(Intuitively, �(q) = (P1; P2) specifies the "-transitions at q. "-transitions to
the states in P1 (resp. P2) have higher (resp. lower) priorities than non-"-
transitions out of q.)

� E associates with each transition a string-variable assignment function, i.e., E
is partial function from Q��"�Q to X! (X [�)� such that its domain
is the set of tuples (q; a; q 0) satisfying that either a2� and q 02 �(q; a) or
a= " and q 02 �(q)

� F is the output function, which is a partial function from Q to (X [�)�

