Robustness Verification for Checking
Crash Consistency of Non-volatile
Memory

Zhilei Han*, Fei He

ASPLOS’25, March 28, 2025

1/23

% 4%

Tsinghua University

Table of Contents

1 Introduction

» Introduction

2/23

1 Introduction

Non-volatile Memory are
persistent storage devices
that allow byte-level
access.

So...what is Non-volatile Memory?

- Volatile Memory
- Load/Store Instructions
- Cache Line Granularity

DDR DRAM

- Non-Volatile Storage
- Load/Store Instructions
- Cache Line Granularity -

.............. NAND SSD

Persistent Memary

- Non-Volatile Storage
- I/O Commands
- Bock Granularity

Hard Disk Drives (HDD})

Tape

F
A J

Capacity
(") See vendor specifications

Image Source: Steve Scargall, Programming Persistent Memory: A Comprehensive Guide for Developers

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Challenges

1 Introduction

CPU
Modern architecture I
MOV CLFLUSH + SFENCE CLFLUSH + SFENCE
employs transparent . CLFLUSHOPT + SFENCE +PCOMMIT + SFENCE
ersistent caches Caches
h CLWB + SFENCE CLFLUSHOPT + SFENCE
cache. MOVNT + SFENCE + PCOMMIT +SFENCE
. . oy l CLWB + SFENCE
This leads to unintuitive ADRsupported + PCOMMIT -+ SFENCE
memory controller controller MOVNT + SFENCE
and non-standard + PCOMMIT + SFENCE

semantics of programs o
running on NVMS_ restricted to PM

Now deprecated
on Intel platforms

Image Source: V. Gogte, A. Kolli, and T. F. Wenisch, A Primer on Memory Persistency.

ei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Challenges (Example)

1 Introduction

The example shows potential executionof a = 1;b = 1;

=0,b=0 =0,b=1
persist order A az !

r 4 e —vo—
® -’ ° |
instructions a=1 b=1 é
° ° |
' ' |
Py
visibility order —#& O | >

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Challenges (Cont.)

1 Introduction

CLFLUSH + SFENCE CLFLUSH + SFENCE
Rreirmredhes CLFLUSHOPT + SFENCE + PCOMMIT + SFENCE
. . CLWB + SFENCE CLFLUSHOPT + SFENCE
Instructions like c1flush MOVNT # SFENCE + PCOMMIT +SFENCE
CLWB + SFENCE
and sfence on x86 are ADR-supported + PCOMMIT + SFENCE
H H memory controller MOVNT + SFENCE
provided to manipulate O SENCE
the persistence order. Now depreeaied
Pe'si:e:?:lolx’nlclin on Intel platforms
o

Image Source: V. Gogte, A. Kolli, and T. F. Wenisch, A Primer on Memory
Persistency.

ei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Our Goal

1 Introduction

Persistent programming is extremely error-prone!

i Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Our Goal

1 Introduction

Persistent programming is extremely error-prone!

We aim to mitigate this by developing an automatic verification method for NVM.

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Our Goal

1 Introduction

Persistent programming is extremely error-prone!
We aim to mitigate this by developing an automatic verification method for NVM.

Crash Consistency: the running program could always recover from a crash correctly.

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Table of Contents

2 Robustness Verification

» Robustness Verification

8/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

The Definition

2 Robustness Verification

We rely on robustness to reduce crash consistency to memory consistency checking:
Robustness

A program running on NVM is robust, if any recovered memory state after system failure
is guaranteed to be reachable (per the underlying memory consistency model).

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Implication of Robustness

2 Robustness Verification

Correct
Reachable
Assuming the volatile behaviour of programs is
correct, robustness is a sufficient condition for crash
consistency. Recoverable

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Refutation

2 Robustness Verification

Clearly, the previous example is not robust.

=0,b=0 =0,b=1
persist order 2 az !

rd e >
o’ ° |
instructions a=1 b=1 é
° ° |
' ' |
i t |
visibility order —& 3 | >

i Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Proving Robustness: A Naive Algorithm

2 Robustness Verification

Consider enumeration of all possible program states fora = 1; || b = 1;

Program State s it possible to recover from NVM? s it reachable?

(a=0,b=0) Y Y
(a=0,b=1) Y Y
(a=1,b=0) Y Y
(a=1,b=1) Y Y

Since all NVM states are reachable, the program is robust.

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Core Problem

2 Robustness Verification

Reachability can be checked by existing approaches, but a core problem remains:

Core Problem
Given a program state s, how do we check s is recoverable, i.e. is it a valid NVM state?

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Recovery Observer: An Example

2 Robustness Verification

Firstly, we use recovery observer to instrument the program with a virtual thread

x=1; y =2
flush x; flush y; rl = x;
a=y; H b = x; H r2 =y,
X = aj y = b;

The recovery observer represents a recovered state from NVM.

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Event Order Graph

2 Robustness Verification

e A concurrent execution could be
modeled as a labeled directed graph.

recovery observer

[1] F. He, Z. Sun, and H. Fan, Satisfiability modulo ordering consistency theory for
multi-threaded program verification

[2] J. Alglave, D. Kroening, and M. Tautschnig, Partial Orders for Efficient Bounded
Model Checking of Concurrent Software

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Event Order Graph

2 Robustness Verification

e A concurrent execution could be
modeled as a labeled directed graph.

e However, the standard constraints
(po, rf etc.) are not sufficient to model
programs running on NVM.

recovery observer

[1] F. He, Z. Sun, and H. Fan, Satisfiability modulo ordering consistency theory for
multi-threaded program verification

[2] J. Alglave, D. Kroening, and M. Tautschnig, Partial Orders for Efficient Bounded
Model Checking of Concurrent Software

i Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Modeling Persistency

2 Robustness Verification

To model persistency, we introduce
additional constraints dtpo:

dtpo
orders any flush on the shared variable
x before any store w to x that are co-ordered

after the store w’ to x read by recovery
observer.

recovery observer

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Solution

2 Robustness Verification

Core Problem

Given a program state s, how do we check s is recoverable, i.e. is it a valid NVM state?

Now we just need to:
e add recovery observer to the program, representing the state s,
e construct the event order graph, and
e check if the graph is acyclic.

Basically, the problem is reduced to validity of a concurrent execution with additional
ordering constraints.

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

The Exploration Algorithm

2 Robustness Verification

Consider the naive algorithm again

Program State Is it possible to recover from NVM? s it reachable?

(a=0,b=0) Y Y
(a=0,b=1) Y Y
(a=1,b=0) Y Y
(a=1,b=1) Y Y

The brute-force search is inefficient!

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Implementation (Overview)

2 Robustness Verification

Instead, we implement our algorithm in an SMT solver leveraging the DPLL(T) exploration.

p=2=0Ayp=0 (initial value)
AXi=1ANa=y1ANxo=a x =1 v =%
1= —n 2= . flush x; flush y; rl = x;
(first thread) I Il
a=y; b = x; r2 = y;

(second thread)

AT] =2x4 AT9 =ys (recovery observer)

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Implementation (Cont.)

2 Robustness Verification

A dedicated theory solver is implemented for robustness checking.

SMT Encoding ¥
Satisfiable model M for B(¥)

Validity Checking, Cycle Detection ...

SAT Solver Robustness Solver

B(¥) is unsatisfiable

Add a conflict clause to ¥
Robust Not Robust

i Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Experimentation (Overview)

2 Robustness Verification

Benchmark: 26 programs from PMDK pmemobj (YES = Robsut).

PMVerify PSan PSan*

YES 1 o) o]
No 12 6 0
UNKNOWN 13 20 26
Unique No. 7 (o} o}
Average Time 2768.42s 16.7s 5.7S

Standard Deviation 1045.26s 9.98s 2.8s

Baseline: PSan random/model checking mode

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Takeaway

2 Robustness Verification

To summarize:

e To prove programs running on NVM is crash safe, we propose to prove robustness of
the program.

i Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Takeaway

2 Robustness Verification

To summarize:

e To prove programs running on NVM is crash safe, we propose to prove robustness of
the program.

e To solve the core problem of checking NVM state validity, we show that it can be
reduced to a concurrent execution with additional constraints.

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Takeaway

2 Robustness Verification

To summarize:

e To prove programs running on NVM is crash safe, we propose to prove robustness of
the program.

e To solve the core problem of checking NVM state validity, we show that it can be
reduced to a concurrent execution with additional constraints.

e The algorithm is implemented in an SMT solver for efficient exploration of search
space.

Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Thank you for listening!
Any questions?

23/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

	Introduction
	Robustness Verification

