
Robustness Verification for Checking
Crash Consistency of Non-volatile
Memory
Zhilei Han*, Fei He
ASPLOS’25, March 28, 2025

1/23

Table of Contents1 Introduction

▶ Introduction

▶ Robustness Verification

2/23

So...what is Non-volatile Memory?1 Introduction

Non-volatile Memory arepersistent storage devicesthat allow byte-levelaccess.

Image Source: Steve Scargall, Programming Persistent Memory: A Comprehensive Guide for Developers

3/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Challenges1 Introduction

Modern architectureemploys transparent
cache.
This leads to unintuitiveand non-standard
semantics of programs
running on NVMs.

Image Source: V. Gogte, A. Kolli, and T. F. Wenisch, A Primer on Memory Persistency.

4/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Challenges (Example)1 Introduction
The example shows potential execution of a = 1; b = 1;

a = 1 b = 1

visibility order

persist order a = 0, b = 1 a = 1, b = 1

instructions

a = 0, b = 0

5/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Challenges (Cont.)1 Introduction

Instructions like clflushand sfence on x86 areprovided to manipulatethe persistence order.

Image Source: V. Gogte, A. Kolli, and T. F. Wenisch, A Primer on MemoryPersistency.
6/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Our Goal1 Introduction

Persistent programming is extremely error-prone!

We aim to mitigate this by developing an automatic verification method for NVM.
Crash Consistency: the running program could always recover from a crash correctly.

7/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Our Goal1 Introduction

Persistent programming is extremely error-prone!
We aim to mitigate this by developing an automatic verification method for NVM.

Crash Consistency: the running program could always recover from a crash correctly.

7/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Our Goal1 Introduction

Persistent programming is extremely error-prone!
We aim to mitigate this by developing an automatic verification method for NVM.
Crash Consistency: the running program could always recover from a crash correctly.

7/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Table of Contents2 Robustness Verification

▶ Introduction

▶ Robustness Verification

8/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

The Definition2 Robustness Verification

We rely on robustness to reduce crash consistency to memory consistency checking:
Robustness

A program running on NVM is robust, if any recovered memory state after system failureis guaranteed to be reachable (per the underlying memory consistency model).

9/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Implication of Robustness2 Robustness Verification

Assuming the volatile behaviour of programs iscorrect, robustness is a sufficient condition for crashconsistency. Recoverable

Reachable

Correct

10/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Refutation2 Robustness Verification
Clearly, the previous example is not robust.

a = 1 b = 1

visibility order

persist order a = 0, b = 1 a = 1, b = 1

instructions

a = 0, b = 0

11/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Proving Robustness: A Naive Algorithm2 Robustness Verification

Consider enumeration of all possible program states for a = 1; ∥ b = 1;

Program State Is it possible to recover from NVM? Is it reachable?
(a = 0, b = 0) Y Y(a = 0, b = 1) Y Y(a = 1, b = 0) Y Y(a = 1, b = 1) Y Y

Since all NVM states are reachable, the program is robust.

12/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Core Problem2 Robustness Verification

Reachability can be checked by existing approaches, but a core problem remains:
Core Problem

Given a program state s, how do we check s is recoverable, i.e. is it a valid NVM state?

13/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Recovery Observer: An Example2 Robustness Verification

Firstly, we use recovery observer to instrument the program with a virtual thread
x = 1;

flush x;

a = y;

x = a;

∥

y = 2;

flush y;

b = x;

y = b;

∥ r1 = x;

r2 = y;

The recovery observer represents a recovered state from NVM.

14/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Event Order Graph2 Robustness Verification

• A concurrent execution could bemodeled as a labeled directed graph.

• However, the standard constraints(po, rf etc.) are not sufficient to model
programs running on NVM.

x = 1

flush x

a = y

x = a

y = 2

flush y

b = x

y = b

r1 = x

x = y = 0

r2 = y

rrf

rrf

rf

fr

fr

dtpo

recovery observer

rf

[1] F. He, Z. Sun, and H. Fan, Satisfiability modulo ordering consistency theory formulti-threaded program verification[2] J. Alglave, D. Kroening, and M. Tautschnig, Partial Orders for Efficient BoundedModel Checking of Concurrent Software

15/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Event Order Graph2 Robustness Verification

• A concurrent execution could bemodeled as a labeled directed graph.
• However, the standard constraints(po, rf etc.) are not sufficient to model
programs running on NVM.

x = 1

flush x

a = y

x = a

y = 2

flush y

b = x

y = b

r1 = x

x = y = 0

r2 = y

rrf

rrf

rf

fr

fr

dtpo

recovery observer

rf

[1] F. He, Z. Sun, and H. Fan, Satisfiability modulo ordering consistency theory formulti-threaded program verification[2] J. Alglave, D. Kroening, and M. Tautschnig, Partial Orders for Efficient BoundedModel Checking of Concurrent Software

15/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Modeling Persistency2 Robustness Verification

To model persistency, we introduceadditional constraints dtpo:
dtpo

dtpo orders any flush on the shared variable
x before any store w to x that are co-orderedafter the store w′ to x read by recoveryobserver.

x = 1

flush x

a = y

x = a

y = 2

flush y

b = x

y = b

r1 = x

x = y = 0

r2 = y

rrf

rrf

rf

fr

fr

dtpo

recovery observer

rf

16/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Solution2 Robustness Verification

Core Problem
Given a program state s, how do we check s is recoverable, i.e. is it a valid NVM state?

Now we just need to:
• add recovery observer to the program, representing the state s,
• construct the event order graph, and
• check if the graph is acyclic.

Basically, the problem is reduced to validity of a concurrent execution with additionalordering constraints.

17/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

The Exploration Algorithm2 Robustness Verification

Consider the naive algorithm again
Program State Is it possible to recover from NVM? Is it reachable?
(a = 0, b = 0) Y Y(a = 0, b = 1) Y Y(a = 1, b = 0) Y Y(a = 1, b = 1) Y Y

The brute-force search is inefficient!

18/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Implementation (Overview)2 Robustness Verification

Instead, we implement our algorithm in an SMT solver leveraging the DPLL(T) exploration.

ρ = x0 = 0 ∧ y0 = 0 (initial value)
∧ x1 = 1 ∧ a = y1 ∧ x2 = a (first thread)
∧ y2 = 2 ∧ b = x3 ∧ y3 = b(second thread)
∧ r1 = x4 ∧ r2 = y4 (recovery observer)

x = 1;

flush x;

a = y;

x = a;

∥

y = 2;

flush y;

b = x;

y = b;

∥ r1 = x;

r2 = y;

19/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Implementation (Cont.)2 Robustness Verification
A dedicated theory solver is implemented for robustness checking.

SAT Solver Robustness Solver

SMT Encoding Ψ

Robust

𝐵(Ψ) is unsatisfiable

Satisfiable model𝑀 for 𝐵(Ψ)

Not Robust
Add a conflict clause to Ψ

Validity Checking, Cycle Detection . . .

20/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Experimentation (Overview)2 Robustness Verification
Benchmark: 26 programs from PMDK pmemobj (YES = Robsut).

PMVerify PSan PSan*
YES 1 0 0No 12 6 0UNKNOWN 13 20 26Unique No. 7 0 0Average Time 2768.42s 16.7s 5.7sStandard Deviation 1045.26s 9.98s 2.8s

Baseline: PSan random/model checking mode

21/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Takeaway2 Robustness Verification

To summarize:
• To prove programs running on NVM is crash safe, we propose to prove robustness ofthe program.

• To solve the core problem of checking NVM state validity, we show that it can be
reduced to a concurrent execution with additional constraints.

• The algorithm is implemented in an SMT solver for efficient exploration of searchspace.

22/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Takeaway2 Robustness Verification

To summarize:
• To prove programs running on NVM is crash safe, we propose to prove robustness ofthe program.
• To solve the core problem of checking NVM state validity, we show that it can be
reduced to a concurrent execution with additional constraints.

• The algorithm is implemented in an SMT solver for efficient exploration of searchspace.

22/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Takeaway2 Robustness Verification

To summarize:
• To prove programs running on NVM is crash safe, we propose to prove robustness ofthe program.
• To solve the core problem of checking NVM state validity, we show that it can be
reduced to a concurrent execution with additional constraints.

• The algorithm is implemented in an SMT solver for efficient exploration of searchspace.

22/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Thank you for listening!
Any questions?

23/23 Zhilei Han*, Fei He | Robustness Verification for Checking Crash Consistency of Non-volatile Memory

	Introduction
	Robustness Verification

